基于NGPP-SVDD的非高斯过程监控及其应用研究
doi: 10.3724/SP.J.1004.2009.00107 cstr: 32138.14.SP.J.1004.2009.00107
-
摘要: 提出了基于NGPP-SVDD (Non-Gaussian projection pursuit, NGPP; Support vector data description, SVDD)的统计过程监控和故障检测方法, 避免了传统统计过程监控方法假设数据服从正态分布的不足. 针对传统的FastICA (Fast independent component analysis)算法容易陷入局部极小值的不足, 结合微粒群算法提出非高斯投影算法(NGPP), 保证提取的独立成分非高斯性最大化, 并给出了非高斯成分数目的选择准则. 获得过程非高斯独立成分之后, 利用SVDD来描述其分布情况, 构造新的统计量确定其统计控制限. 通过对数值仿真及工业应用研究表明, 该方法能够及时地发现过程中出现的异常情况.Abstract: A novel NGPP-SVDD statistical process monitoring approach is proposed to address non-Gaussian multivariate process systems. Such systems present typical challenges to traditional multivariate process monitoring approaches. The particle swarm optimization (PSO) based NGPP approach is proposed to extract the most non-Gaussian component out of the process records and overcome the deficiency of traditional FastICA (fast independent component analysis) algorithm, which is easily trapped in local minimum. Criteria to automatically select the number of non-Gaussian components are also given. Transforming the exacted non-Gaussian components into a feature space using a support vector data description then allows the application of a simple parametric statistical inference. Numerical study and industrial melting process application show the efficiency of the proposed method.
-
计量
- 文章访问数: 3153
- HTML全文浏览量: 60
- PDF下载量: 1722
- 被引次数: 0