• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双高斯分布混合的可解释自适应鲁棒神经网络建模方法

刘鑫 李琪琪 代伟

刘鑫, 李琪琪, 代伟. 基于双高斯分布混合的可解释自适应鲁棒神经网络建模方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250602
引用本文: 刘鑫, 李琪琪, 代伟. 基于双高斯分布混合的可解释自适应鲁棒神经网络建模方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250602
Liu Xin, Li Qi-Qi, Dai Wei. An interpretable and adaptive robust neural network modeling method based on dual gaussian mixture distribution. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250602
Citation: Liu Xin, Li Qi-Qi, Dai Wei. An interpretable and adaptive robust neural network modeling method based on dual gaussian mixture distribution. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250602

基于双高斯分布混合的可解释自适应鲁棒神经网络建模方法

doi: 10.16383/j.aas.c250602 cstr: 32138.14.j.aas.c250602
基金项目: 国家自然科学基金(62573417, 62373361, U24A20272), 江苏省自然科学基金(BK20252089, BK20240102), 中国博士后科学基金(2023M743776, 2024T171003), 江苏省研究生科研与实践创新计划(SJCX25_1396), 中国矿业大学研究生创新计划(2025WLJCRCZL117)资助
详细信息
    作者简介:

    刘鑫:中国矿业大学信息与控制工程学院副教授. 主要研究方向为系统辨识, 数据驱动的工业建模和软测量.E-mail: 15B904027@hit.edu.cn

    李琪琪:中国矿业大学信息与控制工程学院硕士研究生. 主要研究方向为复杂工业过程建模.E-mail: ts24810009p31@cumt.edu.cn

    代伟:中国矿业大学信息与控制工程学院教授. 主要研究方向为复杂工业过程建模、运行优化与控制. 本文通信作者.E-mail: weidai@cumt.edu.cn

An Interpretable and Adaptive Robust Neural Network Modeling Method Based on Dual Gaussian Mixture Distribution

Funds: Supported by National Natural Science Foundation of China(62573417, 62373361, U24A20272), Natural Science Foundation of Jiangsu Province (BK20252089, BK20240102), China Postdoctoral Science Foundation(2023M743776, 2024T171003), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX25_1396), and Graduate Innovation Program of China University of Mining and Technology (2025WLJCRCZL117)
More Information
    Author Bio:

    LIU Xin Associate Professor at the School of Information and Control Engineering, China University of Mining and Technology. His research interest covers system identification, data-driven industrial modeling, and soft sensing

    LI Qi-Qi Master student at the School of Information and Control Engineering, China University of Mining and Technology. Her main research interest is modeling of complex industrial processes

    DAI Wei Professor at the School of Information and Control Engineering, China University of Mining and Technology. His research interest covers modeling, operational optimization, and control of complex industrial processes. Corresponding author of this paper

  • 摘要: 工业过程数据常常受到混合噪声干扰, 传统基于单一厚尾分布的鲁棒建模方法在处理混合噪声问题时, 在准确性与可解释性方面均存在一定局限. 基于此, 提出一种混合双高斯分布的可解释鲁棒自适应建模方法. 该方法首先采用随机配置算法构建基础的随机配置网络学习模型, 确定模型的隐含层节点数、输入权重和偏置; 其次为保证模型对混合噪声的鲁棒性, 构建双高斯分布(一大一小方差)加权组合而成的噪声表征模型; 随后利用期望最大化方法自适应迭代学习随机配置网络输出权值和混合高斯模型噪声参数, 最终形成基于双高斯分布混合鲁棒建模方法. 该方法具有以下优势: 噪声模型能够通过参数自适应学习逼近实际混合噪声特性, 其中大方差高斯分量负责对异常噪声进行粗调, 小方差高斯分量则用于精细拟合主体噪声, 从而增强模型的可解释性; 在网络模型输出权值估计过程中, 通过为每个输出数据点自适应分配惩罚权重, 保障模型的鲁棒性能. 为验证所提方法的有效性, 分别在函数仿真、基准数据集和工业实例上设计多组对比实验, 结果均表明所提方法具备良好的可靠性与实用性.
  • 图  1  DG-RSC算法网络结构

    Fig.  1  The network structure of the DG-RSC algorithm

    图  2  含有10%异常值的训练样本

    Fig.  2  Training samples containing 10% outliers

    图  3  利用验证集对DG-RSC网络进行超参数选择

    Fig.  3  Hyper-parameters selection of the DG-RSC algorithm by using the validation set

    图  4  五种算法在测试集上的拟合效果

    Fig.  4  The fitting effects of five algorithms on the test set

    图  5  不同异常值条件下的残差分布

    Fig.  5  The residual distribution under different outlier conditions

    图  6  不同异常值比例下的RMSE

    Fig.  6  RMSE under different proportions of outliers

    图  7  不同异常值幅值下的RMSE

    Fig.  7  RMSE under different amplitudes of outliers

    图  8  不同背景噪声条件下各算法的$ RMSE $

    Fig.  8  The $ RMSE $ of each algorithm under different background noise conditions

    图  9  不同背景噪声条件下各算法的性能比较

    Fig.  9  Performance comparison of various algorithms under different background noise conditions

    图  10  不同数据量下五种算法运行时间对比

    Fig.  10  Comparison of running times of five algorithms under different data volumes

    图  11  四个基准数据集上五种算法的比较结果

    Fig.  11  The comparison results of five algorithms on four benchmark datasets

    图  12  赤铁矿磨矿过程工艺流程图

    Fig.  12  Flow chart of hematite grinding process

    图  13  各算法在磨矿粒度预测上的雷达图

    Fig.  13  Radar chart of each algorithm in the prediction of grinding particle size

    表  1  不同异常值比例下各算法的性能比较

    Table  1  Performance comparison of various algorithms under different proportions of outliers

    算法 异常值比例
    0% 5% 10% 15%
    $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s)
    DG-RSC $ 0.0007\pm0.0006 $ $ {{1.0000}} $ $ 0.3908 $ $ {{0.0015\pm0.0008}} $ $ {{0.9999}} $ $ 0.4449 $ $ {{0.0018\pm0.0013}} $ $ {{0.9998}} $ $ 0.4734 $ $ {{0.0017\pm0.0010}} $ $ {{0.9998}} $ $ 0.4435 $
    Lap-RSC $ 0.0022\pm0.0014 $ $ 0.9997 $ $ 0.4270 $ $ 0.0024\pm0.0013 $ $ 0.9997 $ $ 0.4804 $ $ 0.0031\pm0.0014 $ $ 0.9995 $ $ 0.4993 $ $ 0.0032\pm0.0011 $ $ 0.9995 $ $ 0.5353 $
    RSC-KDE $ 0.0020\pm0.0013 $ $ 0.9998 $ $ 1.4134 $ $ 0.0035\pm0.0030 $ $ 0.9991 $ $ 1.4207 $ $ 0.0046\pm0.0028 $ $ 0.9988 $ $ 1.4343 $ $ 0.0055\pm0.0020 $ $ 0.9986 $ $ 1.4232 $
    SCN $ {{0.0002\pm0.0002}} $ $ {{1.0000}} $ $ 0.3752 $ $ 0.0166\pm0.0010 $ $ 0.9887 $ $ 0.3813 $ $ 0.0261\pm0.0011 $ $ 0.9720 $ $ 0.3813 $ $ 0.0420\pm0.0032 $ $ 0.9271 $ $ 0.3827 $
    RVFL $ 0.0411\pm0.0149 $ $ 0.9217 $ $ {{0.0060}} $ $ 0.0392\pm0.0126 $ $ 0.9305 $ $ {{0.0059}} $ $ 0.0468\pm0.0113 $ $ 0.9048 $ $ {{0.0051}} $ $ 0.0484\pm0.0109 $ $ 0.8988 $ $ {{0.0059}} $
    算法 异常值比例
    20% 25% 30% 35%
    $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s)
    DG-RSC $ {{0.0016\pm0.0009}} $ $ {{0.9999}} $ $ 0.4460 $ $ {{0.0017\pm0.0015}} $ $ {{0.9998}} $ $ 0.4682 $ $ {{0.0013\pm0.0008}} $ $ {{0.9999}} $ $ 0.4750 $ $ {{0.0015\pm0.0012}} $ $ {{0.9999}} $ $ 0.5624 $
    Lap-RSC $ 0.0035\pm0.0013 $ $ 0.9994 $ $ 0.5460 $ $ 0.0046\pm0.0024 $ $ 0.9989 $ $ 0.6427 $ $ 0.0047\pm0.0020 $ $ 0.9989 $ $ 0.6431 $ $ 0.0047\pm0.0025 $ $ 0.9988 $ $ 1.2807 $
    RSC-KDE $ 0.0048\pm0.0029 $ $ 0.9987 $ $ 1.4272 $ $ 0.0070\pm0.0031 $ $ 0.9976 $ $ 1.4269 $ $ 0.0081\pm0.0032 $ $ 0.9969 $ $ 1.4212 $ $ 0.0081\pm0.0010 $ $ 0.9973 $ $ 1.5324 $
    SCN $ 0.0380\pm0.0008 $ $ 0.9408 $ $ 0.3811 $ $ 0.0414\pm0.0015 $ $ 0.9295 $ $ 0.3773 $ $ 0.0493\pm0.0029 $ $ 0.8997 $ $ 0.3755 $ $ 0.0543\pm0.0020 $ $ 0.8786 $ $ 0.4412 $
    RVFL $ 0.0490\pm0.0091 $ $ 0.8979 $ $ {{0.0059}} $ $ 0.0480\pm0.0105 $ $ 0.9009 $ $ {{0.0060}} $ $ 0.0533\pm0.0081 $ $ 0.8808 $ $ {{0.0060}} $ $ 0.0536\pm0.0121 $ $ 0.8762 $ $ {{0.0059}} $
    下载: 导出CSV

    表  2  不同异常值幅值下各算法的性能比较

    Table  2  Performance comparison of various algorithms under different amplitudes of outliers

    算法 异常值幅值区间
    $ [-0.1,\; 0.1] $ $ [-0.2,\; 0.2] $ $ [-0.3,\; 0.3] $
    $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s)
    DG-RSC $ {{0.0009\pm0.0005}} $ $ {{1.0000}} $ $ 0.4775 $ $ {{0.0011\pm0.0007}} $ $ {{0.9999}} $ $ 0.4821 $ $ {{0.0013\pm0.0007}} $ $ {{0.9999}} $ $ 0.4930 $
    Lap-RSC $ 0.0019\pm0.0006 $ $ 0.9998 $ $ 0.4732 $ $ 0.0023\pm0.0010 $ $ 0.9997 $ $ 0.5072 $ $ 0.0027\pm0.0014 $ $ 0.9996 $ $ 0.5361 $
    RSC-KDE $ 0.0033\pm0.0019 $ $ 0.9994 $ $ 1.4052 $ $ 0.0033\pm0.0021 $ $ 0.9994 $ $ 1.4365 $ $ 0.0032\pm0.0020 $ $ 0.9994 $ $ 1.4642 $
    SCN $ 0.0058\pm0.0002 $ $ 0.9986 $ $ 0.3940 $ $ 0.0116\pm0.0007 $ $ 0.9945 $ $ 0.4006 $ $ 0.0165\pm0.0006 $ $ 0.9888 $ $ 0.4118 $
    RVFL $ 0.0390\pm0.0128 $ $ 0.9309 $ $ {{0.0061}} $ $ 0.0400\pm0.0122 $ $ 0.9281 $ $ {{0.0059}} $ $ 0.0446\pm0.0133 $ $ 0.9111 $ $ {{0.0062}} $
    算法 异常值幅值区间
    $ [-0.4,\; 0.4] $ $ [-0.5,\; 0.5] $ $ [-0.6,\; 0.6] $
    $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s)
    DG-RSC $ {{0.0010\pm0.0007}} $ $ {{0.9999}} $ $ 0.4838 $ $ {{0.0012\pm0.0007}} $ $ {{0.9999}} $ $ 0.4792 $ $ {{0.0012\pm0.0007}} $ $ {{0.9999}} $ $ 0.4807 $
    Lap-RSC $ 0.0030\pm0.0013 $ $ 0.9996 $ $ 0.5169 $ $ 0.0032\pm0.0017 $ $ 0.9995 $ $ 0.5924 $ $ 0.0036\pm0.0019 $ $ 0.9993 $ $ 0.5941 $
    RSC-KDE $ 0.0040\pm0.0029 $ $ 0.9990 $ $ 1.4204 $ $ 0.0050\pm0.0051 $ $ 0.9979 $ $ 1.4233 $ $ 0.0052\pm0.0036 $ $ 0.9984 $ $ 1.4227 $
    SCN $ 0.0246\pm0.0012 $ $ 0.9751 $ $ 0.3822 $ $ 0.0293\pm0.0011 $ $ 0.9646 $ $ 0.3954 $ $ 0.0387\pm0.0016 $ $ 0.9385 $ $ 0.3835 $
    RVFL $ 0.0446\pm0.0127 $ $ 0.9118 $ $ {{0.0055}} $ $ 0.0473\pm0.0119 $ $ 0.9023 $ $ {{0.0060}} $ $ 0.0511\pm0.0090 $ $ 0.8895 $ $ {{0.0060}} $
    下载: 导出CSV

    表  3  不同背景噪声条件下各算法的性能比较

    Table  3  Performance comparison of various algorithms under different background noise conditions

    算法 噪声条件
    无噪声 均匀噪声$ {\rm{U}}(-0.02,\; 0.02) $ 高斯噪声a: 标准差为0.008
    $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s) $ RMSE $ $ R^2 $ 时间$ t $(s)
    DG-RSC$ {{0.0018 \pm 0.0013}} $$ {{0.9998}} $$ 0.4734 $$ {{0.0043 \pm 0.0006}} $$ {{0.9992}} $$ 0.4663 $$ {{0.0031 \pm 0.0005}} $$ {{0.9996}} $$ 0.4788 $
    Lap-RSC$ 0.0031 \pm 0.0014 $$ 0.9995 $$ 0.4993 $$ 0.0068 \pm 0.0006 $$ 0.9981 $$ 0.6788 $$ 0.0046 \pm 0.0008 $$ 0.9991 $$ 0.7359 $
    RSC-KDE$ 0.0046 \pm 0.0028 $$ 0.9988 $$ 1.4343 $$ 0.0062 \pm 0.0043 $$ 0.9977 $$ 1.4729 $$ 0.0049 \pm 0.0024 $$ 0.9988 $$ 1.4621 $
    SCN$ 0.0261 \pm 0.0011 $$ 0.9720 $$ 0.3813 $$ 0.0280 \pm 0.0015 $$ 0.9677 $$ 0.4001 $$ 0.0344 \pm 0.0016 $$ 0.9512 $$ 0.3993 $
    RVFL$ 0.0468 \pm 0.0113 $$ 0.9048 $$ {{0.0051}} $$ 0.0441 \pm 0.0122 $$ 0.9141 $$ {{0.0056}} $$ 0.0453 \pm 0.0108 $$ 0.9108 $$ {{0.0054}} $
    算法噪声条件
    高斯噪声b: 标准差为0.02高斯噪声b+均匀噪声双高斯混合噪声: 高斯噪声a+高斯噪声b
    $ RMSE $$ R^2 $时间$ t $(s)$ RMSE $$ R^2 $时间$ t $(s)$ RMSE $$ R^2 $时间$ t $(s)
    DG-RSC$ {{0.0065 \pm 0.0006 }} $$ {{0.9983}} $$ 0.4755 $$ {{0.0080 \pm 0.0010}} $$ {{0.9973}} $$ 0.5691 $$ {{0.0068 \pm 0.0006}} $$ {{0.9981}} $$ 0.4801 $
    Lap-RSC$ 0.0094 \pm 0.0006 $$ 0.9964 $$ 0.7329 $$ 0.0116 \pm 0.0005 $$ 0.9944 $$ 1.1424 $$ 0.0112 \pm 0.0011 $$ 0.9948 $$ 0.7550 $
    RSC-KDE$ 0.0076 \pm 0.0015 $$ 0.9975 $$ 1.4677 $$ 0.0106 \pm 0.0011 $$ 0.9953 $$ 1.5677 $$ 0.0107 \pm 0.0027 $$ 0.9950 $$ 1.4722 $
    SCN$ 0.0348 \pm 0.0013 $$ 0.9502 $$ 0.3998 $$ 0.0389 \pm 0.0022 $$ 0.9377 $$ 0.4492 $$ 0.0362 \pm 0.0014 $$ 0.9461 $$ 0.4092 $
    RVFL$ 0.0474 \pm 0.0118 $$ 0.9020 $$ {{0.0055}} $$ 0.0516 \pm 0.0099 $$ 0.8866 $$ {{0.0059}} $$ 0.0444 \pm 0.0119 $$ 0.9132 $$ {{0.0055}} $
    下载: 导出CSV

    表  4  不同数据量下五种算法运行时间对比(s)

    Table  4  Comparison of running time of five algorithms under different data volumes (s)

    算法数据量
    1000200030004000500010000
    DG-RSC0.33420.55700.75100.93201.21302.3480
    Lap-RSC0.45100.86401.29401.92902.66107.3280
    RSC-KDE0.49301.50403.47706.57609.799039.4130
    SCN0.31400.49400.59600.75900.91601.3980
    RVFL0.01200.02700.03000.03500.04500.0690
    下载: 导出CSV

    表  5  不同数据集上各算法在不同异常值比例下的性能比较

    Table  5  Performance comparison of various algorithms on different datasets under different proportions of outliers

    数据集 算法 异常值比例
    5% 10% 15% 20% 25% 30%
    mortgage DG-RSC $ {{0.1693 \pm 0.0146}} $ $ {{0.1288 \pm 0.0077}} $ $ {{0.1475 \pm 0.0107}} $ $ {{0.1610 \pm 0.0137}} $ $ {{0.1780 \pm 0.0143}} $ $ {{0.2203 \pm 0.0160}} $
    Lap-RSC $ 0.2096 \pm 0.0180 $ $ 0.1651 \pm 0.0109 $ $ 0.1748 \pm 0.0116 $ $ 0.2067 \pm 0.0218 $ $ 0.2359 \pm 0.0183 $ $ 0.3026 \pm 0.0324 $
    RSC-KDE $ 0.2028 \pm 0.0167 $ $ 0.1734 \pm 0.0122 $ $ 0.1937 \pm 0.0139 $ $ 0.2188 \pm 0.0270 $ $ 0.3097 \pm 0.0308 $ $ 0.4224 \pm 0.0407 $
    SCN $ 0.3160 \pm 0.0212 $ $ 0.3665 \pm 0.0209 $ $ 0.4043 \pm 0.0285 $ $ 0.5044 \pm 0.0388 $ $ 0.6053 \pm 0.0323 $ $ 0.6992 \pm 0.0390 $
    RVFL $ 1.3390 \pm 0.2602 $ $ 1.7169 \pm 0.4050 $ $ 2.2481 \pm 0.4556 $ $ 2.4249 \pm 0.5135 $ $ 2.6632 \pm 0.4525 $ $ 3.6114 \pm 0.8223 $
    wizmir DG-RSC $ {{1.1599 \pm 0.0278}} $ $ {{1.2191 \pm 0.0480}} $ $ {{1.2768 \pm 0.0744}} $ $ {{1.2929 \pm 0.1112}} $ $ {{1.3273 \pm 0.1198}} $ $ {{1.5219 \pm 0.1154}} $
    Lap-RSC $ 1.1854 \pm 0.0301 $ $ 1.3120 \pm 0.0569 $ $ 1.3264 \pm 0.0554 $ $ 1.4668 \pm 0.0938 $ $ 1.6086 \pm 0.0966 $ $ 1.7960 \pm 0.1103 $
    RSC-KDE $ 1.1956 \pm 0.0412 $ $ 1.3341 \pm 0.0414 $ $ 1.3622 \pm 0.0626 $ $ 1.5806 \pm 0.1048 $ $ 1.7738 \pm 0.1093 $ $ 1.9796 \pm 0.1162 $
    SCN $ 1.4138 \pm 0.0669 $ $ 1.6717 \pm 0.0757 $ $ 1.7020 \pm 0.0994 $ $ 2.2305 \pm 0.1795 $ $ 2.5042 \pm 0.1816 $ $ 2.7765 \pm 0.1873 $
    RVFL $ 5.7541 \pm 0.9706 $ $ 5.8140 \pm 0.9805 $ $ 7.1110 \pm 1.4120 $ $ 8.8179 \pm 1.8619 $ $ 10.2235 \pm 1.6002 $ $ 10.0458 \pm 1.6678 $
    concrete DG-RSC $ {{7.9185 \pm 0.7009}} $ $ {{7.9660 \pm 0.8634}} $ $ {{8.5684 \pm 0.8181}} $ $ {{8.8093 \pm 0.7868}} $ $ {{9.1673 \pm 0.7154}} $ $ {{9.8396 \pm 0.7480}} $
    Lap-RSC $ 8.4440 \pm 0.9009 $ $ 8.5939 \pm 0.8985 $ $ 9.1946 \pm 1.0774 $ $ 9.5724 \pm 1.6293 $ $ 9.9237 \pm 1.1928 $ $ 11.2736 \pm 1.9617 $
    RSC-KDE $ 8.5060 \pm 1.0370 $ $ 8.6741 \pm 1.7534 $ $ 9.2001 \pm 0.9336 $ $ 9.4323 \pm 1.5510 $ $ 9.8884 \pm 1.5258 $ $ 11.4299 \pm 2.4740 $
    SCN $ 8.5538 \pm 2.0450 $ $ 8.7493 \pm 1.2632 $ $ 9.3206 \pm 0.9936 $ $ 9.7409 \pm 2.5026 $ $ 10.3615 \pm 1.0438 $ $ 11.5356 \pm 1.8829 $
    RVFL $ 16.5065 \pm 5.1480 $ $ 17.4224 \pm 4.3511 $ $ 21.0452 \pm 5.2337 $ $ 21.9883 \pm 5.7898 $ $ 22.7519 \pm 5.8314 $ $ 25.0754 \pm 10.0859 $
    friedman DG-RSC $ {{1.4065 \pm 0.0868}} $ $ {{1.3628 \pm 0.0820}} $ $ {{1.4965 \pm 0.1323}} $ $ {{1.6856 \pm 0.1087}} $ $ {{1.7088 \pm 0.1383}} $ $ {{1.9808 \pm 0.1496}} $
    Lap-RSC $ 1.4309 \pm 0.0896 $ $ 1.3970 \pm 0.0728 $ $ 1.6113 \pm 0.1123 $ $ 1.8054 \pm 0.0942 $ $ 1.8456 \pm 0.1609 $ $ 2.0729 \pm 0.1621 $
    RSC-KDE $ 1.4353 \pm 0.0937 $ $ 1.3801 \pm 0.0735 $ $ 1.5864 \pm 0.1275 $ $ 1.7740 \pm 0.1308 $ $ 1.8056 \pm 0.1713 $ $ 2.0176 \pm 0.1270 $
    SCN $ 1.4535 \pm 0.0804 $ $ 1.4663 \pm 0.0743 $ $ 1.8940 \pm 0.1321 $ $ 2.1229 \pm 0.1491 $ $ 2.2084 \pm 0.1748 $ $ 2.3715 \pm 0.1332 $
    RVFL $ 1.8656 \pm 0.2222 $ $ 2.3011 \pm 0.2700 $ $ 2.8438 \pm 0.2599 $ $ 3.4747 \pm 0.2742 $ $ 3.7376 \pm 0.4453 $ $ 3.9099 \pm 0.3894 $
    下载: 导出CSV

    表  6  各算法在磨矿粒度预测上的性能表现

    Table  6  The performance of each algorithm in the prediction of grinding particle size

    算法 $ RMSE $ $ R^2 $ 时间$ t $/s
    DG-RSC $ {{0.2457\pm0.0007}} $ $ {{0.9912}} $ $ 0.0896 $
    Lap-RSC $ 0.2623\pm0.0037 $ $ 0.9900 $ $ 0.1546 $
    RSC-KDE $ 0.2508 \pm 0.0014 $ $ 0.9908 $ $ 0.4614 $
    SCN $ 0.3423 \pm 0.0102 $ $ 0.9829 $ $ 0.0664 $
    RVFL $ 0.5009 \pm 0.0286 $ $ 0.9633 $ $ {{0.0069}} $
    下载: 导出CSV
  • [1] Peter O, Anup P, Nelson S M, Samuel A A, Christian O O, Diarah R S. Integration of AI and IoT in smart manufacturing: exploring technological, ethical, and legal frontiers. Procedia Computer Science, 2025, 253: 654−660 doi: 10.1016/j.procs.2025.01.127
    [2] Zhao C, Zhao T N, Sun H, Yang H N. Study on droplet freezing process based on the combination of multiwavelength absorption spectroscopy and data-driven model. Measurement, 2025, 255: 1−12 doi: 10.1016/j.measurement.2025.118083
    [3] Agostino M, Alessandro P, Vito S. An efficient cardiovascular disease prediction model through AI-driven IoT technology. Computers in Biology and Medicine, 2024, 183: 1−13
    [4] 代伟, 张政煊, 杨春雨, 马小平. 基于SCN数据模型的SISO非线性自适应控制. 自动化学报, 2024, 50(10): 2002−2012 doi: 10.16383/j.aas.c210174

    Dai W, Zhang Z X, Yang C Y, Ma X P. Adaptive control of SISO nonlinear system using data-driven SCN model. Acta Automatica Sinica, 2024, 50(10): 2002−2012 doi: 10.16383/j.aas.c210174
    [5] Lee S, Sohn I. Accurate prediction of high-temperature ionic melt viscosity through data-driven modeling enhanced with explainable AI. Journal of Materials Science and Technology, 2025, 248: 110−118
    [6] Xie C R, Chen X. A robust data-driven approach for modeling industrial systems with non-stationary and sparsely sampled data streams. Journal of Process Control, 2025, 150: 1−16 doi: 10.1016/j.jprocont.2025.103425
    [7] Xu L B, Zhang G, Huang X X, He L. Adaptive stochastic resonance in an improved Izhikevich neuron model driven by multiplicative and additive Gaussian noise and its application in fault diagnosis of wind turbines. Renewable Energy, 2025, 253: 1−24
    [8] Cheng Y K, Zhan H F, Yu J H, Wang R. Data-driven online prediction and control method for injection molding product quality. Journal of Manufacturing Processes, 2025, 145: 252−273 doi: 10.1016/j.jmapro.2025.04.054
    [9] Zhang L M Q, Zhu L P, Wen W J, Li J Y, Zhang C. Three-stage composite outlier identification of wind power data: integrating physical rules with regression learning and mathematical morphology. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 1−13 doi: 10.1109/tim.2025.3568938
    [10] Zhang C, Li Z B, Ge Y D, Liu Q L, Suo L M, Song S H, Peng T. Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD. Energy, 2024, 296: 1−15 doi: 10.1016/j.energy.2024.131173
    [11] Jia W N, Li X F, Bi D J, Xie Y L. Maximum mixture correntropy based Student-t kernel adaptive filtering for indoor positioning of Internet of Things. Information Sciences, 2025, 696: 1−21 doi: 10.1016/j.ins.2024.121729
    [12] Liu W T, Li S Y. Monitoring large-scale industrial systems for wastewater treatment processes with process noise using data-driven NARX approach. Control Engineering Practice, 2025, 16: 1−10 doi: 10.1016/j.conengprac.2025.106321
    [13] Wang X Y, Yan X Z, Luo Q H. Adaptive square-root extended cubature kalman filter based on huber M-estimation for multi-AUV cooperative navigation. Measurement, 2025, 249: 1−14
    [14] Luo B, Gao X L. High-dimensional robust approximated M-estimators for mean regression with asymmetric data. Journal of Multivariate Analysis, 2022, 192: 1−21
    [15] Cao B H, Yin Q H, Guo Y H, Yang J, Zhang L B, Wang Z Q, Tyagi M, Zhou X. Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling. Reliability Engineering & System Safety, 2023, 232: 1−16 doi: 10.1016/j.ress.2022.109079
    [16] Yu Z H, Zhang Z Y, Jiang Q C, Yan X F. Neural network-based hybrid modeling approach incorporating Bayesian optimization with industrial soft sensor application. Knowledge-Based Systems, 2024, 301: 1−12 doi: 10.1016/j.knosys.2024.112341
    [17] Fang X H, Song Q H, Wang X J, Li Z Y, Ma H F, Liu Z Q. An intelligent tool wear monitoring model based on knowledge-data-driven physical-informed neural network for digital twin milling. Mechanical Systems and Signal Processing, 2025, 232: 1−30 doi: 10.1016/j.ymssp.2025.112736
    [18] Yu F, Su D, He S Q, Wu Y Y, Zhang S K, Yin H G. Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection. Chinese Physics B, 2025, 34(5): 1−30 doi: 10.1088/1674-1056/adb8bb
    [19] 谭帅, 王一帆, 姜庆超, 侍洪波, 宋冰. 基于不同故障传播路径差异化的故障诊断方法. 自动化学报, 2025, 51(1): 161−173 doi: 10.16383/j.aas.c240151

    Tan S, Wang Y F, Jiang Q C, Shi H B, Song B. Fault propagation path-aware network: a fault diagnosis method. Acta Automatica Sinica, 2025, 51(1): 161−173 doi: 10.16383/j.aas.c240151
    [20] Pao Y H, Takefuji Y. Functional-link net computing: theory, system architecture, and functionalities. Computer, 1992, 25(5): 76−79 doi: 10.1109/2.144401
    [21] Wang D H, Li M. Stochastic configuration networks: fundamentals and algorithms. IEEE Transactions on Cybernetics, 2017, 47(10): 3346−3479 doi: 10.1109/tcyb.2017.2734043
    [22] Sun K, Yang C P, Gao C, Wu X L, Zhao J J. Development of an online updating stochastic configuration network for the soft-sensing of the semi-autogenous ball mill crusher system. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1−11 doi: 10.1109/tim.2023.3348909
    [23] Yan A J, Hu K C, Wang D H. Monitoring model based on data-driven optimization stochastic configuration network and its applications. IEEE Sensors Journal, 2025, 25(6): 10087−10096 doi: 10.1109/JSEN.2025.3538942
    [24] Guo Y N, Pu J Y, He J L, Jiao B T, Ji J J, Yang S X. Adaptive stochastic configuration network based on online active learning for evolving data streams. Information Sciences, 2025, 711: 1−16
    [25] Zhu J Z, Zhang L, Zhang D, Chen Y X. Probabilistic wind power prediction using incremental Bayesian stochastic configuration network under concept drift environment. IEEE Transactions on Industry Applications, 2025, 61(1): 1399−1409 doi: 10.1109/TIA.2024.3462696
    [26] Wang D H, Tian P X, Dai W, Yu G. Predicting particle size of copper ore grinding with stochastic configuration networks. IEEE Transactions on Industrial Informatics, 2024, 20(11): 12969−12978 doi: 10.1109/TII.2024.3431039
    [27] Wang D H, Li M. Robust stochastic configuration networks with kernel density estimation for uncertain data regression. Information Sciences, 2017, 412-413: 210−222 doi: 10.1016/j.ins.2017.05.047
    [28] Yan A J, Guo J C, Wang D H. Robust stochastic configuration networks for industrial data modelling with Student's-t mixture distribution. Information Sciences, 2022, 606: 493−505 doi: 10.1016/j.ins.2022.05.105
    [29] Lu J, Ding J. Mixed-distribution-based robust stochastic configuration networks for prediction interval construction. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5099−5109 doi: 10.1109/TII.2019.2954351
    [30] Liu X, Liu X Q, Dai W. Robust SCN for data-driven modeling based on heavy-tailed noise distribution. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 1−13 doi: 10.1109/tim.2025.3547532
    [31] 刘鑫. 时滞取值概率未知下的线性时滞系统辨识方法. 自动化学报, 2023, 49(10): 2136−2144

    Liu X. Identification of linear time-delay systems with unknown delay distributions in its value range. Acta Automatica Sinica, 2023, 49(10): 2136−2144
    [32] Chen X, Zhao S, Liu F, Tao C B. Laplace distribution based online identification of linear systems with robust recursive expectation-maximization algorithm. IEEE Transactions on Industrial Informatics, 2023, 19(8): 9028−9036 doi: 10.1109/TII.2022.3225026
    [33] He J C, Peng B, Wang G. A non-linear non-Gaussian filtering framework based on the Gaussian noise model jump assumption. Automatica, 2025, 178: 1−7 doi: 10.1016/j.automatica.2025.112360
    [34] Li Z H, Hou B, Wu Z T, Guo Z X, Ren B, Guo X P, et al. Complete rotated localization loss based on super-Gaussian distribution for remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61(8): 1−14 doi: 10.1109/tgrs.2023.3305578
    [35] Jin X, Huang B. Robust identification of piecewise/switching autoregressive exogenous process. AIChE Journal, 2010, 56(7): 1829−1844 doi: 10.1002/aic.12112
    [36] Schneider F, Papaioannou I, Sudret B, Müller G. Maximum a posteriori estimation for linear structural dynamics models using Bayesian optimization with rational polynomial chaos expansions. Computer Methods in Applied Mechanics and Engineering, 2024, 432: 1−22 doi: 10.1016/j.cma.2024.117418
    [37] Alcalá-Fdez J, Fernandez A, Luengo J, Derrac J, García S, Sánchez L, Herrera F. KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Multiple-Valued Logic and Soft Computing, 2011, 17(2-3): 255−287
    [38] 姚雷, 吴迪, 谢永鑫. 磨矿过程理论及设备研究进展. 选煤技术, 2023, 51(2): 1−8 doi: 10.16447/j.cnki.cpt.2023.02.001

    Yao L, Wu D, Xie Y X. Progress of research on grinding process theory and equipment. Coal Preparation Technology, 2023, 51(2): 1−8 doi: 10.16447/j.cnki.cpt.2023.02.001
    [39] Guo W, Guo K Q. Effect of solid concentration on particle size distribution and grinding kinetics in stirred mills. Minerals, 2024, 14(7): 1−15 doi: 10.3390/min14070720
  • 加载中
计量
  • 文章访问数:  4
  • HTML全文浏览量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-05
  • 录用日期:  2025-12-24
  • 网络出版日期:  2026-02-11

目录

    /

    返回文章
    返回