• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于传感重构的高可靠无人飞行器自动防撞策略

李睿 许斌 阎振鑫 杨林

李睿, 许斌, 阎振鑫, 杨林. 基于传感重构的高可靠无人飞行器自动防撞策略. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250535
引用本文: 李睿, 许斌, 阎振鑫, 杨林. 基于传感重构的高可靠无人飞行器自动防撞策略. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250535
Li Rui, Xu Bin, Yan Zhen-Xin, Yang Lin. High-reliability automatic collision avoidance strategy for unmanned aerial vehicles based on sensing reconstruction. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250535
Citation: Li Rui, Xu Bin, Yan Zhen-Xin, Yang Lin. High-reliability automatic collision avoidance strategy for unmanned aerial vehicles based on sensing reconstruction. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250535

基于传感重构的高可靠无人飞行器自动防撞策略

doi: 10.16383/j.aas.c250535 cstr: 32138.14.j.aas.c250535
基金项目: 国家自然科学基金(61933010), 西北工业大学博士论文创新基金(CX2025017)资助
详细信息
    作者简介:

    李睿:西北工业大学博士研究生. 分别于2021年和2024年获得西北工业大学学士和硕士学位. 主要研究方向为多源信息融合和飞行器避障控制. E-mail: lirui_nwpu@163.com

    许斌:西北工业大学教授. 2006年获得西北工业大学学士学位, 2012年获得清华大学博士学位. 主要研究方向为智能控制, 自适应控制及其应用. 本文通信作者. E-mail: smileface.binxu@gmail.com

    阎振鑫:中航工业西安飞行自动控制研究所研究员. 主要研究方向为飞行控制系统设计. E-mail: yanzhenxin_nwpu@163.com

    杨林:成都飞机设计研究所研究员. 主要研究方向为飞行控制系统设计. E-mail: YangLin_nwpu@163.com

High-reliability Automatic Collision Avoidance Strategy for Unmanned Aerial Vehicles Based on Sensing Reconstruction

Funds: Supported by National Natural Science Foundation of China (61933010), and Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX2025017)
More Information
    Author Bio:

    LI Rui Ph.D. candidate at Northwestern Polytechnical University. He received his bachelor and master degrees from Northwestern Polytechnical University in 2021 and 2024, respectively. His research interest covers multi-source information fusion and aircraft obstacle avoidance control

    XU Bin Professor at Northwestern Polytechnical University. He received his bachelor degree from Northwestern Polytechnical University in 2006, and received his Ph.D. degree from Tsinghua University in 2012. His research interest covers intelligent control and adaptive control with its applications. Corresponding author of this paper

    YAN Zhen-Xin Researcher at AVIC Xi'an Flight Automatic Control Research Institute. His main research interest is aircraft flight control system design

    YANG Lin Researcher at Chengdu Aircraft Design & Research Institute. His main research interest is aircraft flight control system design

  • 摘要: 面向低空经济发展中无人飞行器对复杂空域安全飞行的需求, 系统考虑大气传感器在强风干扰下的失效问题, 并提出一种基于传感重构的高可靠自动防撞策略. 首先建立含湍流扰动的飞行器动力学模型, 采用自适应容积卡尔曼滤波融合导航量测与控制信号, 实现真空速与气流角等状态的鲁棒在线重构; 其次针对逃逸阶段的模型失配与噪声扰动, 设计智能学习自适应控制律补偿状态估计误差, 实现逃逸姿态指令稳定跟踪; 最后构建滤波协方差驱动的动态碰撞包络, 结合控制系统模型量化轨迹预测不确定度, 完成地形碰撞检测, 并生成多逃逸轨迹择优避障指令. 仿真结果表明, 在突风与强湍流条件下, 可实现气流角精确重构及鲁棒防撞告警与改出控制, 相关技术可为低空无人飞行器防撞系统设计提供可靠方案.
  • 图  1  基于传感重构的高可靠无人飞行器自动防撞策略的整体技术框图

    Fig.  1  System block diagram of the high-reliability automatic collision avoidance strategy for unmanned aerial vehicles based on sensing reconstruction

    图  2  飞机碰撞包络

    Fig.  2  Flight envelope for collision avoidance

    图  3  真空速重构结果((a)估计结果; (b)估计误差)

    Fig.  3  Reconstruction result of $V$((a)Estimation result; (b)Estimation error)

    图  5  侧滑角重构结果((a)估计结果; (b)估计误差)

    Fig.  5  Reconstruction result of $\beta$((a)Estimation result; (b)Estimation error)

    图  4  迎角重构结果((a)估计结果; (b)估计误差)

    Fig.  4  Reconstruction result of $\alpha$((a)Estimation result; (b)Estimation error)

    图  6  风作用估计结果((a)${V}_{wx}^{g}$; (b)${V}_{wy}^{g}$; (c)${V}_{wz}^{g}$)

    Fig.  6  Estimation result of ${\boldsymbol{V}}_{w}^{g}$((a)${V}_{wx}^{g}$; (b)${V}_{wy}^{g}$; (c)${V}_{wz}^{g}$)

    图  7  逃逸姿态指令跟踪结果((a)$\phi $; (b)$\theta $)

    Fig.  7  Result of escape attitude command tracking((a)$\phi $; (b)$\theta $)

    图  8  逃逸轨迹预测结果

    Fig.  8  Results of escape trajectory prediction

    图  9  预测轨迹碰撞检测结果三维展示

    Fig.  9  Results of 3 D visualization of predicted trajectory collision detection

    图  10  预测轨迹碰撞检测结果二维展示((a)左转爬升轨迹; (b)垂直爬升轨迹; (c)右转爬升轨迹; (d)原任务轨迹)

    Fig.  10  Results of 2 D visualization of predicted trajectory collision detection((a)Left-turn climb trajectory; (b)Vertical climb trajectory; (c)Right-turn climb trajectory; (d)Original mission trajectory)

    表  1  轨迹预测不确定度估计算法

    Table  1  Algorithm for estimating uncertainty in trajectory prediction

    算法1. 轨迹预测不确定度估计算法
    输入. 当前为$k$时刻, $\hat{{\boldsymbol{X}}}_{k}$, $\hat{{\boldsymbol{P}}}_{k}$, $\hat{{\boldsymbol{Q}}}_{k}$, $\phi _{c}$, $\theta _{c}$, $\Delta t$, $T$
    初始化. ${{\boldsymbol{P}}}_{p,\; 0}=[\hat{{X}}_{k,\; 1},\; \hat{{X}}_{k,\; 2},\; \hat{{X}}_{k,\; 3}]^{{\rm{T}}}$
    ${{\boldsymbol{S}}}_{p,\; 0}=2.58[\hat{{P}}_{k,\; 1},\; \hat{{P}}_{k,\; 2},\; \hat{{P}}_{k,\; 3}]^{{\rm{T}}}$
    ${\rm{For}}$ $j = 1,\; 2,\; 3,\; \cdots ,\; T_{p}/\Delta t-1$
     ①根据式(32)计算$\phi _{c}$, $\theta _{c}$
     ②根据式(35)、(36)、(41)、(44)、(45)、(46)计算$\overline{\boldsymbol{\delta}}$
     ③令${{\boldsymbol{U}}}_{k}=[T,\; \overline{\boldsymbol{\delta}}^{{\rm{T}}}]^{{\rm{T}}} $
     ④根据式(17)$-$(20)计算$\hat{{\boldsymbol{X}}}_{k+1 |k}$, $\hat{{\boldsymbol{P}}}_{k+1 |k}$
     ⑤令$\hat{{\boldsymbol{X}}}_{k+1}=\hat{{\boldsymbol{X}}}_{k+1 |k}$, $\hat{{\boldsymbol{P}}}_{k+1}=\hat{{{\boldsymbol{P}}}}_{k+1 |k}$, $\hat{{\boldsymbol{Q}}}_{k+1}=\hat{{\boldsymbol{Q}}}_{k}$
     ⑥${{\boldsymbol{P}}}_{p,\; j}=[\hat{{X}}_{k+1,\; 1},\; \hat{{X}}_{k+1,\; 2},\; \hat{{X}}_{k+1,\; 3}]^{{\rm{T}}}$
      ${{\boldsymbol{S}}}_{p,\; j}=2.58[\hat{{P}}_{k+1,\; 1},\; \hat{{P}}_{k+1,\; 2},\; \hat{{P}}_{k+1,\; 3}]^{{\rm{T}}}$
     ⑦令$k=k+1$
    End
    输出. : ${{\boldsymbol{P}}}_{p}$, ${{\boldsymbol{S}}}_{p}$
    下载: 导出CSV

    表  2  算法性能仿真测试结果

    Table  2  Results of algorithm performance simulation test

    评判指标 本文算法 对比算法
    测试场景 高原 丘陵 高原 丘陵
    虚警率 0% 0.8% 3.2% 6.0%
    告警成功率 99.2% 98.0% 89.6% 85.2%
    改出成功率 98.8% 97.6% 83.2% 80.8%
    下载: 导出CSV
  • [1] 陈林, 缪志强, 王祥科, 陈谋, 段海滨, 王耀南. 自主飞行器技术及其在低空经济中的应用综述. 机器人, 2025, 47(03): 470−496

    Chen Lin, Miao Zhi-Qiang, Wang Xiang-Ke, Chen Mou, Duan Hai-Bin, Wang Yao-Nan. Overview on autonomous aircraft technology and its application to low-altitude economy. Robot, 2025, 47(03): 470−496
    [2] 蒲钒, 陈志杰, 刘杨, 耿欣, 朱永文. 数字低空融合运行空中交通管理技术. 航空学报, 2025, 46(11): 35−57

    Pu Fan, Chen Zhi-Jie, Liu Yang, Geng Xin, Zhu Yong-Wen, Ren Ke-Jin. Air traffic management technologies for digital low-altitude integrated operations. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 35−57
    [3] Fan Q, Li J, Liu T, Xu B. Hierarchical optimization design for autonomous flight of vision-based quadrotor using reinforcement learning. IEEE Transactions on Cybernetics, 2025, 55(7): 3119−3130 doi: 10.1109/TCYB.2025.3562800
    [4] Kou C G, Stoll J R, Leang K K. Impact of surface roughness on quasi-steady in-ground effect for hover-capable aerial vehicles. International Journal of Micro Air Vehicles, 2025, 17: 17568293251350056 doi: 10.1177/17568293251350056
    [5] Lin C Y, Tseng Y C, Yao W S. Design of UAV flexible landing control system based on model reference adaptive control. International Journal of Micro Air Vehicles, 2025, 17: 17568293251356945 doi: 10.1177/17568293251356945
    [6] Swihart D E, Barfield A F, Griffin E M, Lehmann R C, Whitcomb S C, Flynn B. Automatic ground collision avoidance system design, integration, & flight test. IEEE Aerospace and Electronic Systems Magazine, 2011, 26(5): 4−11 doi: 10.1109/maes.2011.5871385
    [7] Lu P, Van Kampen E J, De Visser C, Chu Q. Air data sensor fault detection and diagnosis in the presence of atmospheric turbulence: theory and experimental validation with real flight data. IEEE Transactions on Control Systems Technology, 2020, 29(5): 2255−2263 doi: 10.1109/tcst.2020.3025725
    [8] Shukla P, Shukla S, Singh A K. Trajectory-prediction techniques for unmanned aerial vehicles (UAVs): A comprehensive survey. IEEE Communications Surveys & Tutorials, 2025, 27(3): 1867−1910 doi: 10.1109/COMST.2024.3471671
    [9] 汤新民, 李腾, 陈强超, 顾俊伟. 基于交互式多模型的短期4 D航迹预测. 武汉理工大学学报(交通科学与工程版), 2020, 44(01): 39−45

    Tang Xin-Min, Li Teng, Chen Qiang-Chao, Gu Jun-Wei. Short-term 4 D trajectory prediction based on interactive multi-models. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(01): 39−45
    [10] BAkhtar S, Habibi S. The interacting multiple model smooth variable structure filter for trajectory prediction. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 9217−9239 doi: 10.1109/TITS.2023.3271295
    [11] Suplisson A W. Optimal recovery trajectories for automatic ground collision avoidance systems (auto gcas)[Ph. D. dissertation], Air Force Institute of Technology, 2015.
    [12] 白杨, 米禹丰, 刘云飞, 张雪. 基于多轨迹预测的飞机近地防撞技术研究. 飞机设计, 2023, 43(4): 61−65 doi: 10.19555/j.cnki.1673-4599.2023.04.012

    Bai Yang, Mi Yu-Feng, Liu Yun-Fei, Zhang Xue. Research on aircraft near-ground collision avoidance technology based on multi-trajectory prediction. Aircraft Design, 2023, 43(4): 61−65 doi: 10.19555/j.cnki.1673-4599.2023.04.012
    [13] Li Ming-Xiao, Lu Feng, Zhang Heng-Cai, Chen Jie. Predicting future locations of moving objects with deep fuzzy-LSTM networks. Transportmetrica A. Transport Science, 2020, 16(1): 119−136 doi: 10.1080/23249935.2018.1552334
    [14] Alex Z, Stewart W, Eduardo N. Naturalistic driver intention and path prediction using recurrent neural networks. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4): 1584−1594 doi: 10.1109/tits.2019.2913166
    [15] Zhang H P, Huang C Q, Tang S Q. CNN-based real-time prediction method of flight trajectory of unmanned combat aerial vehicle. Acta Armamentarii, 2020, 41(9): 1894−1903
    [16] Zhang R, Guo P, Cheng G, Wu D, Xu B. Intelligent robust control of MEMS gyroscopes With initial-condition-independent prescribed performance. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(4): 8984−8994 doi: 10.1109/TAES.2025.3549009
    [17] 于目航, 王霞, 杨林, 许斌. 面向战机大迎角机动过程的智能学习控制. 自动化学报, 2024, 50(04): 719−730 doi: 10.16383/j.aas.c230642

    Yu Mu-Hang, Wang Xia, Yang Lin, Xu Bin. Intelligent learning control for fighter maneuvers at high angle of attack. Acta Automatica Sinica, 2024, 50(04): 719−730 doi: 10.16383/j.aas.c230642
    [18] Li Z, Cui H, Zhang D, Wang M, Wang X, Xu B. Integral barrier Lyapunov function based ride quality control of flexible civil aircraft with overload constraint. Aerospace Science and Technology, 2026, 168: 110789 doi: 10.1016/j.ast.2025.110789
    [19] Wang X, Yu M, Yang L, Xu B. Airflow angles estimation-based finite-time adaptive neural control for aircraft at high-angle-of-attack maneuvers. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2025, 55(8): 5126−5136 doi: 10.1109/TSMC.2025.3559536
    [20] Shou Y, Zhan T, Xu B, Sun F. Finite-time adaptive control of flexible hypersonic flight vehicle under measurement noise. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(3): 5826−5838 doi: 10.1109/TAES.2024.3523460
    [21] 张睿, 李世华, 魏振岩, 许斌. 测量噪声下的高超声速飞行器组合观测鲁棒控制. 宇航学报, 2024, 45(02): 203−211 doi: 10.3873/j.issn.1000-1328.2024.02.005

    Zhang Rui, Li Shi-Hua, Wei Zhen-Yan, Xu Bin. Robust control of hypersonic flight vehicle based on combined state observation under measurement noises. Journal of Astronautics, 2024, 45(02): 203−211 doi: 10.3873/j.issn.1000-1328.2024.02.005
    [22] Molnar T G, Kannan S K, Cunningham J, Dunlap K, Hobbs K L, et al. Collision avoidance and geofencing for fixed-wing aircraft with control barrier functions. IEEE Transactions on Control Systems Technology, 2025, 33(05): 1493−1508 doi: 10.1109/TCST.2025.3536215
    [23] Harun M H, Abdullah S S, Aras M S M, Bahar M B, Ali I F. Recent developments and future prospects in collision avoidance control for unmanned aerial vehicles (UAVS): A Review. International Journal of Robotics & Control Systems, 2024, 4(3): 1207−1242 doi: 10.31763/ijrcs.v4i3.1482
    [24] Yuan S, Li Q, Lu B, Niu X, Liu Y, Gao W. Trajectory prediction for fighter aircraft ground collision avoidance based on the model predictive control technique. Aerospace Systems, 2025, 8(1): 61−70 doi: 10.1007/s42401-024-00300-6
    [25] Chen R, and Zhao L. Ground collision avoidance system with multi-trajectory risk assessment and decision function. The Aeronautical Journal, 2024, 128(1327): 2038−2053 doi: 10.1017/aer.2024.13
    [26] Trombetta John V. Multi-trajectory automatic ground collision avoidance system with flight tests (project Have ESCAPE). [Ph. D. dissertation], Air Force Institute of Technology, 2016.
    [27] Guo P, Zhang R, Xu B. Safety separation distance design for UAV formation based on system performance. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(3): 5980−5995 doi: 10.1109/TAES.2024.3524948
    [28] Hernandez-Romero E, Valenzuela A, Rivas D. Probabilistic multi-aircraft conflict detection and resolution considering wind forecast uncertainty. Aerospace Science and Technology, 2020, 105(10): 105973 doi: 10.1016/j.ast.2020.105973
    [29] Siqi H, Shaowu C, Yaping Z. A Multi-aircraft conflict detection and resolution method for 4-dimensional trajectory-based operation. Chinese Journal of Aeronautics, 2018, 31(7): 1579−1593 doi: 10.1016/j.cja.2018.04.017
    [30] Yang Y, Zhang J, Cai K Q. Multi-aircraft conflict detection and resolution based on probabilistic reachsets. IEEE Transactions on Control Systems Technology, 2016, 25(1): 309−316
    [31] Jilkov V P, Ledet J H, Li X R. Multiple model method for aircraft conflict detection and resolution in intent and weather uncertainty. IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(2): 1004−1020 doi: 10.1109/taes.2018.2867698
    [32] 吕晓晨, 史静平, 吕永玺, 李耕农. 传感器失效下的魔毯着舰气流角重构算法. 航空学报, 2025, 46(13): 264−279 doi: 10.7527/S1000-6893.2024.31159

    Lv Xiao-Chen, Shi Jing-Ping, Lv Yong-Xi, Li Geng-Nong. Flow angle reconstruction algorithm for MAGIC CARPET Landing with sensor failure. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 264−279 doi: 10.7527/S1000-6893.2024.31159
  • 加载中
计量
  • 文章访问数:  11
  • HTML全文浏览量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-13
  • 录用日期:  2025-12-24
  • 网络出版日期:  2026-01-30

目录

    /

    返回文章
    返回