• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能网联无人系统云控制平台的关键理论与技术

夏元清 刘丹阳 杨洪玖 于东东 高润泽

夏元清, 刘丹阳, 杨洪玖, 于东东, 高润泽. 智能网联无人系统云控制平台的关键理论与技术. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250423
引用本文: 夏元清, 刘丹阳, 杨洪玖, 于东东, 高润泽. 智能网联无人系统云控制平台的关键理论与技术. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250423
Xia Yuan-Qing, Liu Dan-Yang, Yang Hong-Jiu, Yu Dong-Dong, Gao Run-Ze. Key theories and technologies of cloud control platform for intelligent connected unmanned systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250423
Citation: Xia Yuan-Qing, Liu Dan-Yang, Yang Hong-Jiu, Yu Dong-Dong, Gao Run-Ze. Key theories and technologies of cloud control platform for intelligent connected unmanned systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250423

智能网联无人系统云控制平台的关键理论与技术

doi: 10.16383/j.aas.c250423 cstr: 32138.14.j.aas.c250423
基金项目: 国家自然科学基金(U25A20460, 62373269), 北京市自然科学基金-海淀原始创新联合基金(L252035)资助
详细信息
    作者简介:

    夏元清:中原工学院校长, 北京理工大学讲席教授. 主要研究方向为云控制系统, 网络化控制系统, 鲁棒控制与信号处理, 自抗扰控制, 无人系统控制和飞行控制. E-mail: xia_yuanqing@bit.edu.cn

    刘丹阳:北京理工大学自动化学院博士研究生. 主要研究方向为云控制系统, 云计算, 云边协同和分布式系统. E-mail: liu_danyang@bit.edu.cn

    杨洪玖:天津大学电气自动化与信息工程学院教授, 中原工学院自动化与电气工程学院教授. 主要研究方向为鲁棒控制, 滤波理论, delta算子系统, 网络化控制系统和自抗扰控制. 本文通信作者. E-mail: yanghongjiu@tju.edu.cn

    于东东:中原工学院自动化与电气工程学院助理教授. 主要研究方向为多传感器信息融合, 分布式状态估计, 信号处理和非线性滤波. E-mail: dongdoyu@163.com

    高润泽:北京理工大学自动化学院博士后. 主要研究方向为云控制系统, 模型预测控制和数据驱动预测控制. E-mail: runze_gao@bit.edu.cn

Key Theories and Technologies of Cloud Control Platform for Intelligent Connected Unmanned Systems

Funds: Supported by National Natural Science Foundation of China (U25A20460, 62373269) and Beijing Natural Science Foundation Haidian Original Innovation Joint Fund (L252035)
More Information
    Author Bio:

    XIA Yuan-Qing  President at the Zhongyuan University of Technology, chair professor at the Beijing Institute of Technology. His research interests include cloud control systems, networked control systems, robust control and signal processing, active disturbance rejection control, unmanned systems control, and flight control

    LIU Dan-Yang  Ph. D. candidate at the School of Automation, Beijing Institute of Technology. His research interests include cloud control systems, cloud computing, cloud-edge collaboration, and distributed systems

    YANG Hong-Jiu  Professor at the School of Electrical and Information Engineering, Tianjin University, professor at the School of Automation and Electrical Engineering, Zhongyuan University of Technology. His research interests include robust control, filter theory, delta operator systems, networked control systems, and active disturbance rejection control. Corresponding author of this paper

    YU Dong-Dong  Assistant professor at the School of Automation and Electrical Engineering, Zhongyuan University of Technology. His research interests include multi-sensor information fusion, distributed state estimation, signal processing, and nonlinear filtering

    GAO Run-Ze  Postdoctoral at the School of Automation, Beijing Institute of Technology. His research interests include cloud control systems, model predicitive control, and data-driven predictive control

  • 摘要: 针对智慧城市中无人系统因通信架构不统一、任务调度效率低下及数字孪生技术难以支撑实时全局决策所导致的跨域协同难题, 融合云控制系统理论与数字孪生技术, 基于云网边端协同云控制架构, 构建智能网联无人系统云控制平台及关键理论与技术体系. 该体系涵盖云控制系统综合建模、模型-数据联合驱动控制、多运动体跨域协同云控制等关键理论, 研究数字孪生系统、容器化云工作流调度系统、动态云控制系统、远程驾驶系统等关键技术. 在校园场景下部署无人机、无人车、无人船、机器人等异构无人系统, 形成空基、地基、海(水)基动态云并实现跨域协同, 验证了所提理论体系的可行性与有效性, 为未来智慧城市发展与跨域无人系统协同应用提供理论支撑与技术路径.
  • 图  1  智能网联无人系统云控制平台架构

    图  2  智能网联无人系统云控制平台可视化界面

    图  3  无人车数字孪生场地

    图  4  无人机与机器人数字孪生场地

    图  5  无人船数字孪生场地

    图  6  容器化工作流调度系统

    图  7  工作流定义格式

    图  8  动态云控制系统

    图  9  远程驾驶舱

    图  10  无人机硬件平台

    图  11  无人车硬件平台

    图  12  无人车内部硬件

    图  13  路侧单元

    图  14  无人船硬件平台

    图  15  无人船船坞

    图  16  水下机器人硬件平台

    图  17  四足机器人硬件平台

    图  18  双足机器人硬件平台

  • [1] Deng T, Zhang K, Shen Z J. A systematic review of a digital twin city: A new pattern of urban governance toward smart cities. Journal of Management Science and Engineering, 2021, 6(2): 125−134 doi: 10.1016/j.jmse.2021.03.003
    [2] Khan A, Gupta S, Gupta S K. Emerging UAV technology for disaster detection, mitigation, response, and preparedness. Journal of Field Robotics, 2022, 39(6): 905−955 doi: 10.1002/rob.22075
    [3] Girma A, Bahadori N, Sarkar M, Tadewos T G, Behnia M R, Mahmoud M N, et al. IoT-enabled autonomous system collaboration for disaster-area management. IEEE/CAA Journal of Automatica Sinica, 2020, 7(5): 1249−1262 doi: 10.1109/jas.2020.1003291
    [4] 陈龙, 王晓, 杨健健, 艾云峰, 田滨, 李宇宸, 等. 平行矿山: 从数字孪生到矿山智能. 自动化学报, 2021, 47(7): 1633−1645 doi: 10.16383/j.aas.2021.y000001

    Chen Long, Wang Xiao, Yang Jian-Jian, Ai Yun-Feng, Tian Bin, Li Yu-Chen, et al. Parallel mining operating systems: From digital twins to mining intelligence. Acta Automatica Sinica, 2021, 47(7): 1633−1645 doi: 10.16383/j.aas.2021.y000001
    [5] 杨林瑶, 陈思远, 王晓, 张俊, 王成红. 数字孪生与平行系统: 发展现状, 对比及展望. 自动化学报, 2019, 45(11): 2001−2031 doi: 10.16383/j.aas.2019.y000002

    Yang Lin-Yao, Chen Si-Yuan, Wang Xiao, Zhang Jun, Wang Cheng-Hong. Digital twins and parallel systems: Current status, comparison, and prospects. Acta Automatica Sinica, 2019, 45(11): 2001−2031 doi: 10.16383/j.aas.2019.y000002
    [6] Hananto A L, Tirta A, Herawan S G, Idris M, Soudagar M E, Djamari D W, et al. Digital twin and 3D digital twin: Concepts, applications, and challenges in Industry 4.0 for digital twin. Computers, 2024, 13(4): −Article No. 100 doi: 10.3390/computers13040100
    [7] Allam Z, Jones D S. Future (post-COVID) digital, smart and sustainable cities in the wake of 6G: Digital twins, immersive realities and new urban economies. Land Use Policy, 2021, 101: Article No. 105201 doi: 10.1016/j.landusepol.2020.105201
    [8] Fakhraian E, Semanjski I, Semanjski S, Aghezzaf E H. Towards safe and efficient unmanned aircraft system operations: Literature review of digital twins applications and european union regulatory compliance. Drones, 2023, 7(7): Article No. 478 doi: 10.3390/drones7070478
    [9] Clemente D, Calheiros-Cabral T, Rosa-Santos P, Taveira-Pinto F. Blue seaports: The smart, sustainable and electrified ports of the future. Smart Cities, 2023, 6(3): 1560−1588 doi: 10.3390/smartcities6030074
    [10] Hildmann H, Kovacs E. Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safety. Drones, 2019, 3(3): Article No. 59 doi: 10.3390/drones3030059
    [11] Ding W, Xu C, Arief M, Lin H, Li B, Zhao D. A survey on safety-critical driving scenario generation--A methodological perspective. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7): 6971−6988 doi: 10.1109/TITS.2023.3259322
    [12] 郭戈, 许阳光, 徐涛, 李丹丹, 王云鹏, 袁威. 网联共享车路协同智能交通系统综述. 控制与决策, 2019, 34(11): 2375−2389 doi: 10.13195/j.kzyjc.2019.1316

    Guo Ge, Xu Yang-Guang, Xu Tao, Li Dan-Dan, Wang Yun-Peng, Yuan Wei. A survey of connected shared vehicle-road cooperative intelligent transportation systems. Control and Decision, 2019, 34(11): 2375−2389 doi: 10.13195/j.kzyjc.2019.1316
    [13] 胡云峰, 曲婷, 刘俊, 施竹清, 朱冰, 曹东璞, 等. 智能汽车人机协同控制的研究现状与展望. 自动化学报, 2019, 45(7): 1261−1280

    Hu Yun-Feng, Qu Ting, Liu Jun, Shi Zhu-Qing, Zhu Bing, Cao Dong-Pu, et al. Research status and prospects of human-machine cooperative control for intelligent vehicles. Acta Automatica Sinica, 2019, 45(7): 1261−1280
    [14] Li T, Hu H. Development of the use of unmanned aerial vehicles (UAVs) in emergency rescue in China. Risk Management and Healthcare Policy, 2021, 14: 4293−4299 doi: 10.2147/RMHP.S323727
    [15] 雷添杰, 李长春, 何孝莹. 无人机航空遥感系统在灾害应急救援中的应用. 自然灾害学报, 2011, 20(1): 178−183 doi: 10.3969/j.issn.2096-4137.2022.21.061

    Lei Tian-Jie, Li Chang-Chun, He Xiao-Ying. Application of UAV aerial remote sensing system in disaster emergency rescue. Journal of Natural Disasters, 2011, 20(1): 178−183 doi: 10.3969/j.issn.2096-4137.2022.21.061
    [16] 杨少龙, 孙延浩, 黄金, 向先波. 面向任意位置姿态估计的无人艇虚实交互研究. 舰船科学技术, 2021, 43(6): 151−156 doi: 10.3404/j.issn.1672-7649.2021.06.029

    Yang Shao-Long, Sun Yan-Hao, Huang Jin, Xiang Xian-Bo. Research on virtual-reality interaction of unmanned surface vehicle for arbitrary position and pose estimation. Ship Science and Technology, 2021, 43(6): 151−156 doi: 10.3404/j.issn.1672-7649.2021.06.029
    [17] 王凯, 徐浩, 张梦妍, 黄连忠, 马冉祺, 王建行, 等. 数字孪生技术在水路运输领域的应用及研究. 中国舰船研究, 2023, 18(5): 1−10 doi: 10.19693/j.issn.1673-3185.02451

    Wang Kai, Xu Hao, Zhang Meng-Yan, Huang Lian-Zhong, Ma Ran-Qi, Wang Jian-Hang, et al. Application and research of digital twin technology in waterway transportation. Chinese Journal of Ship Research, 2023, 18(5): 1−10 doi: 10.19693/j.issn.1673-3185.02451
    [18] Xia Y Q. From networked control systems to cloud control systems. In: Proceedings of the 31st Chinese control conference. Hefei, China: IEEE, 2012. 5878-5883
    [19] Xia Y Q. Cloud control systems. IEEE/CAA Journal of Automatica Sinica, 2015, 2(2): 134−142 doi: 10.1016/b978-0-12-818701-2.00012-3
    [20] Xia Y Q, Qin Y M, Zhai D H, Chai S C. Further results on cloud control systems. Science China Information Sciences, 2016, 59: Article No. 073201 doi: 10.1007/s11432-016-5586-9
    [21] 夏元清. 云控制系统及其面临的挑战. 自动化学报, 2016, 42(1): 1−12

    Xia Yuan-Qing. Cloud control systems and their challenges. Acta Automatica Sinica, 2016, 42(1): 1−12
    [22] Shi W S, Cao J, Zhang Q, Li Y H Z, Xu L Y. Edge computing: Vision and challenges. IEEE Internet of Things Journal, 2016, 3(5): 637−646 doi: 10.1109/JIOT.2016.2579198
    [23] Gao R Z, Xia Y Q, Dai L, Sun Z Q, Zhan Y F. Design and implementation of data-driven predictive cloud control system. Journal of Systems Engineering and Electronics, 2022, 33(6): 1258−1268
    [24] Gao R Z, Li Q W, Dai L, Zhan Y F, Xia Y Q. Workflow-based fast data-driven predictive control with disturbance observer in cloud-edge collaborative architecture. IEEE Transactions on Automation Science and Engineering, 2023, 21(3): 2816−2840 doi: 10.1109/tase.2023.3270203
    [25] Guo G, Wang Y P. An integrated MPC and deep reinforcement learning approach to trams-priority active signal control. Control Engineering Practice, 2021, 110: Article No. 104758 doi: 10.1016/j.conengprac.2021.104758
    [26] Gao R Z, Zhou T, Dai L, Zou Z L, Xia Y Q. Cloud-enabled workflow-based real-time MPC for autonomous vehicle dynamical trajectory tracking. IEEE Transactions on Vehicular Technology, DOI: 10.1109/TVT.2025.3630061
    [27] Chai T Y, Zhou Z, Zheng R, Liu N, Jia Y. PID tuning intelligent system based on end-edge-cloud collaboration. Acta Automatica Sinica, 2023, 49(3): 514−527
    [28] 夏元清, 王晁, 高润泽, 詹玉峰, 孙中奇, 戴荔, 等. 云网边端协同云控制研究进展及挑战. 信息与控制, 2024, 53(3): 273−286 doi: 10.13976/j.cnki.xk.2024.4007

    Xia Yuan-Qing, Wang Chao, Gao Run-Ze, Zhan Yu-Feng, Sun Zhong-Qi, Dai Li, et al. Research progress and challenges of cloud-network-edge-end collaborative cloud control. Information and Control, 2024, 53(3): 273−286 doi: 10.13976/j.cnki.xk.2024.4007
    [29] Dragoni N, Giallorenzo S, Lafuente A L, Mazzara M, Montesi F, Mustafin R, et al. Microservices: Yesterday, today, and tomorrow. Present and Ulterior Software Engineering, 2017, 6: 195−216 doi: 10.2307/jj.5993309.17
    [30] 董超, 陶婷, 冯斯梦, 屈毓锛, 刘青昕, 吴钰蕾, 等. 面向无人机自组网和车联网的媒体接入控制协议研究综述. 电子与信息学报, 2022, 44(3): 790−802

    Dong Chao, Tao Ting, Feng Si-Meng, Qu Yu-Ben, Liu Qing-Xin, Wu Yu-Lei, et al. A survey on media access control protocols for UAV networks and vehicular networks. Journal of Electronics & Information Technology, 2022, 44(3): 790−802
    [31] Yang L W, Ye L J, Xia Y Q, Zhan Y F. Look-ahead workflow scheduling with width changing trend in clouds. Future Generation Computer Systems, 2023, 139: 139−150 doi: 10.1016/j.future.2022.09.013
    [32] Ye L J, Xia Y Q, Tao S Y, Yan C, Gao R Z, Zhan Y F. Reliability-aware and energy-efficient workflow scheduling in IaaS clouds. IEEE Transactions on Automation Science and Engineering, 2022, 20(3): 2156−2169
    [33] Hammoud A, Sami H, Mourad A, Otrok H, Mizouni R, Bentahar J. AI, blockchain, and vehicular edge computing for smart and secure IoV: Challenges and directions. IEEE Internet of Things Magazine, 2020, 3(2): 68−73 doi: 10.1109/IOTM.0001.1900109
    [34] Shan C G, Xia Y Q, Zhan Y F, Zhang J H. KubeAdaptor: A docking framework for workflow containerization on Kubernetes. Future Generation Computer Systems, 2023, 148: 584−599 doi: 10.1016/j.future.2023.06.022
    [35] Liu D Y, Xia Y Q, Shan C G, Tian K, Zhan Y F. A Kubernetes-based scheme for efficient resource allocation in containerized workflow. Future Generation Computer Systems, 2025, 166: Article No. 107699 doi: 10.1016/j.future.2024.107699
    [36] Shan C G, Gao R Z, Yang Z, Zhang W, Xia Y Q. ControlService: A containerized solution for control-algorithm-as-a-service in cloud control systems. Science China Information Sciences, 2024, 67(8): Article No. 182201 doi: 10.1007/s11432-023-4017-0
    [37] Gao R Z, Xia Y Q, Wang G, Yang L W, Zhan Y F. Fast subspace identification method based on containerised cloud workflow processing system. IEEE Transactions on Automation Science and Engineering, 2023, 21(4): 5725−5737 doi: 10.1109/tase.2023.3316287
    [38] Zhou X, Zhu J C, Zhou H Y, Xu C, Gao F. Ego-swarm: A fully autonomous and decentralized quadrotor swarm system in cluttered environments. In: Proceedings of the 2021 IEEE international conference on robotics and automation. Xi'an, China: IEEE, 2021. 4101-4107
  • 加载中
计量
  • 文章访问数:  18
  • HTML全文浏览量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-29
  • 录用日期:  2025-11-06
  • 网络出版日期:  2026-01-21

目录

    /

    返回文章
    返回