Target Enclosing Control of Unmanned Aerial Vehicle Swarm Based on Socialized Collaboration
-
摘要: 面向感知、通信受限且存在环境障碍的移动目标合围控制, 提出一种基于社会化协同的控制策略. 首先, 借鉴生物集群社会化行为, 构建协同响应模型与层级交互机制; 在拓扑切换与丢包条件下, 显式建模受限信息流, 以驱动集群实现目标合围. 其次, 提出强引导式任务-避碰并行协同控制, 在优先保障飞行安全的前提下实现鲁棒合围控制. 再次, 设计一致性目标状态观测器, 对目标位置与速度进行稳健估计. 最后, 仿真结果表明, 所提方法在障碍环境以及感知、通信受限条件下能够实现稳定合围, 并表现出较好的鲁棒性.Abstract: A socialized-collaboration-based control strategy is proposed for mobile-target encirclement under perception and communication constraints in the presence of environmental obstacles. First, inspired by socialized behaviors in biological swarms, a cooperative response model and a hierarchical interaction mechanism are established; under topology switching and packet-loss conditions, the constrained information flow is explicitly modeled to drive the swarm to achieve target encirclement. Second, a strongly guided task–collision-avoidance parallel cooperative control scheme is proposed to realize robust encirclement while prioritizing flight safety. Third, a consensus-based target-state observer is designed to robustly estimate the target position and velocity. Finally, simulation results demonstrate that the proposed method can achieve stable encirclement in obstacle-laden environments under perception and communication constraints, exhibiting favorable robustness.
-
表 1 仿真参数设置
Table 1 Settings of simulation parameters
类别 符号 数值 无人机集群规模 $ N $ $ 7 $ 速度上下界 $ ({V}_{\min },\;{V}_{\max }) $ $ (10,\;80)\;\mathrm{m}/\mathrm{s} $ 最大过载 $ {n}_{\max } $ $ 6 $ 最大航迹角 $ {\gamma }_{\max } $ $ \pi /4 $ 自动驾驶仪时间常数 $ {\tau }_{v},\;{\tau }_{\chi },\;{\tau }_{\gamma } $ $ 2.5\;\mathrm{s} $,$ 2.5\;\mathrm{s},\;2.5\;\mathrm{s} $ 高度控制增益常数 $ {k}_{1},\;{k}_{2} $ $ 2,\;2 $ 感知半径 $ {r}_{d} $ $ 200\;\mathrm{m} $ 通信距离 $ {r}_{c} $ $ 200\;\mathrm{m} $ 期望合围半径 $ {r}^{\mathrm{*}} $ $ 100\;\mathrm{m} $ 期望角间距 $ \varphi _{iT}^{\mathrm{*}} $ $ -\pi $ 观测器收敛系数 $ \alpha $ $ 2 $ 排斥力系数 $ {\rho }_{a} $ $ 2 $ 安全距离 $ {d}_{s} $ $ 150\;\mathrm{m} $ 控制增益 $ {\gamma }_{1},\;{\gamma }_{2},\;{\gamma }_{3},\;{\gamma }_{4} $ $ 5,\;1,\;5,\;8 $ 社会力权重系数 $ {w}_{co},\;{w}_{T},\; $
$ {w}_{d},\;{w}_{w} $$ 0.4,\;0.4,\; $
$ 0.15,\;0.05 $表 2 障碍物参数设置
Table 2 Settings of obstacle parameters
障碍物标号 中心点坐标 范围半径 1 (400, 280) 150 m 2 (800, −280) 50 m 3 ( 1200 , 150)150 m 4 ( 1600 , −150)50 m 5 ( 2300 , 150)150 m 表 3 三种算法对比仿真统计结果
Table 3 Simulation statistics results for three algorithms comparison
指标 VFM RFM 本文 合围时间$ {T}_{c}(\mathrm{s}) $ $ 82.4\pm 6.8 $ $ 95.7\pm 9.3 $ $ \mathbf{59}.\mathbf{3}\pm \mathbf{5}.\mathbf{4} $ 均方误差$ {E}_{r}\left(\mathrm{m}\right) $ $ 5.1\pm 1.7 $ $ 6.8\pm 2.1 $ $ \mathbf{3}.\mathbf{2}\pm \mathbf{1}.\mathbf{0} $ 避碰成功率$ {P}_{c}(\% ) $ $ 71.2\pm 4.9 $ $ 65.5\pm 6.3 $ $ \mathbf{93}.\mathbf{8}\pm \mathbf{3}.\mathbf{1} $ RMSE $ 3.5\pm 0.8 $ $ 4.1\pm 1.0 $ $ \mathbf{2}.\mathbf{4}\pm \mathbf{0}.\mathbf{7} $ -
[1] Chung S J, Paranjape A A, Dames P, Shen S, Kumar V. A survey on aerial swarm robotics. IEEE Transactions on Robotics, 2018, 34(4): 837−855 doi: 10.1109/TRO.2018.2857475 [2] Mei Z, Shao X, Xia Y, Liu J, Enhanced fixed-time collision-free elliptical circumnavigation coordination for UAVs. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 4257–4270 [3] Zhang Q, Liu H H. Robust nonlinear close formation control of multiple fixed-wing aircraft. Journal of Guidance, Control, and Dynamics, 2021, 44(3): 572−586 doi: 10.2514/1.G004592 [4] Raja G, Baskar Y, Dhanasekaran P, Nawaz R, Yu K. An efficient formation control mechanism for multi-UAV navigation in remote surveillance. In: Proceeding of IEEE Globecom Workshops, Madrid, Spain: IEEE Press, 2021. 1–6 [5] Ranjan P K, Sinha A, Cao Y, Tran D, Casbeer D, Weintraub I. Energy-efficient ring formation control with constrained inputs. Journal of Guidance, Control, and Dynamics, 2023, 46(7): 1397−1407 doi: 10.2514/1.G007057 [6] Krátký V, Alcántara A, Capitán J, Štˇepán P, Saska M, Ollero A. Autonomous aerial filming with distributed lighting by a team of unmanned aerial vehicles. IEEE Robotics and Automation Letters, 2021, 6(4): 7580−7587 doi: 10.1109/LRA.2021.3098811 [7] Sinha A, Cao Y. 3-D nonlinear guidance law for target circumnavigation. IEEE Control Systems Letters, 2023, 7: 655−660 doi: 10.1109/LCSYS.2022.3215609 [8] Kim T H, Sugie T. Cooperative control for target-capturing task based on a cyclic pursuit strategy. Automatica, 2007, 43(8): 1426−1431 doi: 10.1016/j.automatica.2007.01.018 [9] Pothen A A, Ratnoo A. Curvature-constrained Lyapunov vector field for standoff target tracking, ” Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2729–2736 [10] Shao X, Xia Y, Mei Z, Zhang W. Model-guided reinforcement learning enclosing for UAVs with collision-free and reinforced tracking capability. Aerospace Science and Technology, 2023, 142(Part A): 108609 [11] Sinha A, Cao Y. Three-dimensional guidance law for target enclosing within arbitrary smooth shapes. Journal of Guidance, Control, and Dynamics, 2023, 46(11): 2224−2234 doi: 10.2514/1.G007539 [12] Dong F, You K, Song S. Target encirclement with any smooth pattern using range-based measurements. Automatica, 2020, 116: 108932 doi: 10.1016/j.automatica.2020.108932 [13] Dong F, You K, Xie L, Hu Q. Coordinate-free circumnavigation of a moving target via a PD-like controller. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 2012−2025 doi: 10.1109/TAES.2021.3127858 [14] Jain P, Peterson C K, Beard R W. Encirclement of moving targets using noisy range and bearing measurements. Journal of Guidance, Control, and Dynamics, 2022, 45(8): 1399−1414 doi: 10.2514/1.G006403 [15] Ranjan P K, Sinha A, Cao Y. Robust UAV guidance law for safe target circumnavigation with limited information and autopilot lag considerations. In: Proceeding of AIAA SCITECH, Florida, USA, 2024: 0124 [16] Ju S, Wang J, Dou L. Enclosing control for multiagent systems with a moving target of unknown bounded velocity. IEEE Transactions on Cybernetics, 2022, 52(11): 11561−11570 doi: 10.1109/TCYB.2021.3072031 [17] Jiang Y, Peng Z, Liu L, Wang D, Zhang F. Safety-critical cooperative target enclosing control of autonomous surface vehicles based on finite-time fuzzy predictors and input-to-state safe high-order control barrier functions. IEEE Transactions on Fuzzy Systems, 2024, 32(3): 816−830 doi: 10.1109/TFUZZ.2023.3309706 [18] Dou L, Yu X, Liu L, Wang X, Feng G. Moving-target enclosing control for mobile agents with collision avoidance. IEEE Transactions on Control of Network Systems, 2021, 8(4): 1669−1679 doi: 10.1109/TCNS.2021.3078120 [19] Lu K, Dai S L, Jin X. Cooperative constrained enclosing control of multi robot systems in obstacle environments, IEEE Transactions on Control of Network Systems, 2024, 11(2): 718–730 [20] Olfati-Saber R, Murray R M. Consensus Problems in Networks of Agents with Switching Topology and Time-Delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520−1533 doi: 10.1109/TAC.2004.834113 [21] Lian B, Y. Wan, Y. Zhang, M. Liu, F. L. Lewis, and T. Chai. Distributed Kalman consensus filter for estimation with moving targets. IEEE Transactions on Automatic Control, 2022, 52(6): 5242−5254 [22] Li Y, Li S. Self-localization for distributed systems based on the relative measurement information. In: Proceeding of 2022 41st Chinese Control Conference, Hefei, China: IEEE Press, 2022: 4778–4783 [23] Liu F, Guo C, Meng W, Su R, Li H. Moving-target circum-navigation using adaptive neural anti-synchronization control via distance-only measurements. IEEE Transactions on Cybernetics, 2024, 54(1): 308−318 doi: 10.1109/TCYB.2023.3234366 [24] Li H L, Cai Y W, Hong J C, Peng X, Cheng H, Zhu X M. VG-Swarm: A vision-based gene regulation network for UAVs swarm behavior emergence. IEEE Robotics and Automation Letters, 2023, 8(3): 1175−1182 doi: 10.1109/LRA.2023.3236565 [25] Mirzaeinia A, Heppner F, Hassanalian M. An Analytical Study on Leader and Follower Switching in V-Shaped Canada Goose Flocks for Energy Management Purposes. Swarm Intelligence, 2020, 14: 117−141 doi: 10.1007/s11721-020-00179-x [26] Pennisi E. How Did Cooperative Behavior Evolve?. Science, 2005, 309(5731): 93−93 doi: 10.1126/science.309.5731.93 [27] Shanghai Jiao Tong University, 125 Questions: Exploration and Discovery. Science/AAAS Custom Publishing Office, 2021 [28] 蒲志强, 易建强, 刘振, 丘腾海, 孙金林, 李非墨. 知识和数据协同驱动的群体智能决策方法研究综述. 自动化学报, 2022, 48(3): 627-640Pu Z Q, Yi J Q, Liu Z, Qiu T H, Sun J L, Li F M. Knowledge-based and data-driven integrating methodologies for collective intelligence decision making: A survey. Acta Automatica Sinica, 2022, 48(3): 627−643 [29] Mogilner A, Edelstein-Keshet L, Bent L, Spiros A. Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation. Journal of Mathematical Biology, 2003, 47(4): 353−389 doi: 10.1007/s00285-003-0209-7 [30] 陈波, 张辉, 江一鸣, 钟杭, 王耀南. 基于分层仿生神经网络的多机器人协同区域搜索算法. 自动化学报, 2025, 51(4): 890−902 doi: 10.16383/j.aas.c240458Chen B, Zhang H, Jiang Y M, Zhong H, Wang Y N. A hierarchical bio-inspired neural network based multi-robot cooperative area search algorithm. Acta Automatica Sinica, 2025, 51(4): 890−902 doi: 10.16383/j.aas.c240458 [31] Miao Z, Wang Y, Fierro R. Cooperative circumnavigation of a moving target with multiple nonholonomic robots using backstepping design. Systems & Control Letters, 2017, 103: 58−65 doi: 10.1016/j.sysconle.2017.03.004 -
计量
- 文章访问数: 15
- HTML全文浏览量: 6
- 被引次数: 0
下载: