• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于社会化协同的无人机集群目标合围控制

彭雅兰 段海滨 范彦铭 李明

彭雅兰, 段海滨, 范彦铭, 李明. 基于社会化协同的无人机集群目标合围控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250415
引用本文: 彭雅兰, 段海滨, 范彦铭, 李明. 基于社会化协同的无人机集群目标合围控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250415
Peng Ya-Lan, Duan Hai-Bin, Fan Yan-Ming, Li Ming. Target enclosing control of unmanned aerial vehicle swarm based on socialized collaboration. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250415
Citation: Peng Ya-Lan, Duan Hai-Bin, Fan Yan-Ming, Li Ming. Target enclosing control of unmanned aerial vehicle swarm based on socialized collaboration. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250415

基于社会化协同的无人机集群目标合围控制

doi: 10.16383/j.aas.c250415 cstr: 32138.14.j.aas.c
基金项目: 国家自然科学基金(62350048, U2541218, T2121003)
详细信息
    作者简介:

    彭雅兰:北京航空航天大学自动化科学与电气工程学院博士研究生. 主要研究方向为仿生集群自主飞行控制.E-mail: ylpeng@buaa.edu.cn

    段海滨:北京航空航天大学自动化科学与电气工程学院教授. 主要研究方向为无人机集群仿生自主飞行控制. 本文通信作者.E-mail: hbduan@buaa.edu.cn

    范彦铭:中国航空工业集团公司沈阳飞机设计研究所专业领域首席专家. 主要研究方向为先进飞行控制技术研究与系统研制.E-mail: michaelfan@yeah.net

    李明:中国工程院院士, 中国航空工业集团公司沈阳飞机设计研究所首席专家. 主要研究方向为飞机自动化, 无人机自主飞行控制. E-mail: mingli@mail.sy.ln.cn

Target Enclosing Control of Unmanned Aerial Vehicle Swarm Based on Socialized Collaboration

Funds: Supported by National Natural Science Foundation of China (62350048, U2541218, T2121003)
More Information
    Author Bio:

    PENG Ya-Lan Ph.D. candidate at the School of Automation Science and Electrical Engineering, Beihang University. Her research interest covers the biologically swarm autonomous flight control

    DUAN Hai-Bin Professor at the School of Automation Science and Electrical Engineering, Beihang University. His research interest covers the biologically autonomous flight control of unmanned aerial vehicle swarms. Corresponding author of this paper

    FAN Yan-Ming Chief expert in the professional field at Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China. His research interest covers the study and system development of advanced flight control technology

    LI Ming Academician of the Chinese Academy of Engineering, and chief expert at Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China. His research interest covers aircraft automation and autonomous flight control of unmanned aerial vehicles

  • 摘要: 面向感知、通信受限且存在环境障碍的移动目标合围控制, 提出一种基于社会化协同的控制策略. 首先, 借鉴生物集群社会化行为, 构建协同响应模型与层级交互机制; 在拓扑切换与丢包条件下, 显式建模受限信息流, 以驱动集群实现目标合围. 其次, 提出强引导式任务-避碰并行协同控制, 在优先保障飞行安全的前提下实现鲁棒合围控制. 再次, 设计一致性目标状态观测器, 对目标位置与速度进行稳健估计. 最后, 仿真结果表明, 所提方法在障碍环境以及感知、通信受限条件下能够实现稳定合围, 并表现出较好的鲁棒性.
  • 图  1  无人机集群目标合围

    Fig.  1  Target enclosing of UAV swarm

    图  2  目标观测器性能分析图

    (a) 目标状态与估计对比 (b) 平均绝对误差与均方根误差

    Fig.  2  Performance analysis of the target-state observer

    (a) comparison between true and estimated target states (b) temporal evolution of mean absolute error and root mean square error

    图  3  无人机集群目标合围飞行三维轨迹

    Fig.  3  3D trajectories of the UAV swarm during target enclosing task

    图  4  无人机集群目标合围飞行二维轨迹

    Fig.  4  2D flight paths of UAV swarm target enclosing control

    图  5  无人机与障碍物相对距离

    Fig.  5  Relative distance between UAV and obstacles

    图  6  无人机与合围目标相对距离

    Fig.  6  Relative distance between UAV and the target

    图  7  失效比例对集群性能指标影响

    Fig.  7  Influence of failure ratio on swarm performance indicators

    图  8  不同失效比例下的避碰成功率

    Fig.  8  Collision-avoidance success rate under different failure ratios

    表  1  仿真参数设置

    Table  1  Settings of simulation parameters

    类别 符号 数值
    无人机集群规模 $ N $ $ 7 $
    速度上下界 $ ({V}_{\min },\;{V}_{\max }) $ $ (10,\;80)\;\mathrm{m}/\mathrm{s} $
    最大过载 $ {n}_{\max } $ $ 6 $
    最大航迹角 $ {\gamma }_{\max } $ $ \pi /4 $
    自动驾驶仪时间常数 $ {\tau }_{v},\;{\tau }_{\chi },\;{\tau }_{\gamma } $ $ 2.5\;\mathrm{s} $,$ 2.5\;\mathrm{s},\;2.5\;\mathrm{s} $
    高度控制增益常数 $ {k}_{1},\;{k}_{2} $ $ 2,\;2 $
    感知半径 $ {r}_{d} $ $ 200\;\mathrm{m} $
    通信距离 $ {r}_{c} $ $ 200\;\mathrm{m} $
    期望合围半径 $ {r}^{\mathrm{*}} $ $ 100\;\mathrm{m} $
    期望角间距 $ \varphi _{iT}^{\mathrm{*}} $ $ -\pi $
    观测器收敛系数 $ \alpha $ $ 2 $
    排斥力系数 $ {\rho }_{a} $ $ 2 $
    安全距离 $ {d}_{s} $ $ 150\;\mathrm{m} $
    控制增益 $ {\gamma }_{1},\;{\gamma }_{2},\;{\gamma }_{3},\;{\gamma }_{4} $ $ 5,\;1,\;5,\;8 $
    社会力权重系数 $ {w}_{co},\;{w}_{T},\; $
    $ {w}_{d},\;{w}_{w} $
    $ 0.4,\;0.4,\; $
    $ 0.15,\;0.05 $
    下载: 导出CSV

    表  2  障碍物参数设置

    Table  2  Settings of obstacle parameters

    障碍物标号 中心点坐标 范围半径
    1 (400, 280) 150 m
    2 (800, −280) 50 m
    3 (1200, 150) 150 m
    4 (1600, −150) 50 m
    5 (2300, 150) 150 m
    下载: 导出CSV

    表  3  三种算法对比仿真统计结果

    Table  3  Simulation statistics results for three algorithms comparison

    指标 VFM RFM 本文
    合围时间$ {T}_{c}(\mathrm{s}) $ $ 82.4\pm 6.8 $ $ 95.7\pm 9.3 $ $ \mathbf{59}.\mathbf{3}\pm \mathbf{5}.\mathbf{4} $
    均方误差$ {E}_{r}\left(\mathrm{m}\right) $ $ 5.1\pm 1.7 $ $ 6.8\pm 2.1 $ $ \mathbf{3}.\mathbf{2}\pm \mathbf{1}.\mathbf{0} $
    避碰成功率$ {P}_{c}(\% ) $ $ 71.2\pm 4.9 $ $ 65.5\pm 6.3 $ $ \mathbf{93}.\mathbf{8}\pm \mathbf{3}.\mathbf{1} $
    RMSE $ 3.5\pm 0.8 $ $ 4.1\pm 1.0 $ $ \mathbf{2}.\mathbf{4}\pm \mathbf{0}.\mathbf{7} $
    下载: 导出CSV
  • [1] Chung S J, Paranjape A A, Dames P, Shen S, Kumar V. A survey on aerial swarm robotics. IEEE Transactions on Robotics, 2018, 34(4): 837−855 doi: 10.1109/TRO.2018.2857475
    [2] Mei Z, Shao X, Xia Y, Liu J, Enhanced fixed-time collision-free elliptical circumnavigation coordination for UAVs. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 4257–4270
    [3] Zhang Q, Liu H H. Robust nonlinear close formation control of multiple fixed-wing aircraft. Journal of Guidance, Control, and Dynamics, 2021, 44(3): 572−586 doi: 10.2514/1.G004592
    [4] Raja G, Baskar Y, Dhanasekaran P, Nawaz R, Yu K. An efficient formation control mechanism for multi-UAV navigation in remote surveillance. In: Proceeding of IEEE Globecom Workshops, Madrid, Spain: IEEE Press, 2021. 1–6
    [5] Ranjan P K, Sinha A, Cao Y, Tran D, Casbeer D, Weintraub I. Energy-efficient ring formation control with constrained inputs. Journal of Guidance, Control, and Dynamics, 2023, 46(7): 1397−1407 doi: 10.2514/1.G007057
    [6] Krátký V, Alcántara A, Capitán J, Štˇepán P, Saska M, Ollero A. Autonomous aerial filming with distributed lighting by a team of unmanned aerial vehicles. IEEE Robotics and Automation Letters, 2021, 6(4): 7580−7587 doi: 10.1109/LRA.2021.3098811
    [7] Sinha A, Cao Y. 3-D nonlinear guidance law for target circumnavigation. IEEE Control Systems Letters, 2023, 7: 655−660 doi: 10.1109/LCSYS.2022.3215609
    [8] Kim T H, Sugie T. Cooperative control for target-capturing task based on a cyclic pursuit strategy. Automatica, 2007, 43(8): 1426−1431 doi: 10.1016/j.automatica.2007.01.018
    [9] Pothen A A, Ratnoo A. Curvature-constrained Lyapunov vector field for standoff target tracking, ” Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2729–2736
    [10] Shao X, Xia Y, Mei Z, Zhang W. Model-guided reinforcement learning enclosing for UAVs with collision-free and reinforced tracking capability. Aerospace Science and Technology, 2023, 142(Part A): 108609
    [11] Sinha A, Cao Y. Three-dimensional guidance law for target enclosing within arbitrary smooth shapes. Journal of Guidance, Control, and Dynamics, 2023, 46(11): 2224−2234 doi: 10.2514/1.G007539
    [12] Dong F, You K, Song S. Target encirclement with any smooth pattern using range-based measurements. Automatica, 2020, 116: 108932 doi: 10.1016/j.automatica.2020.108932
    [13] Dong F, You K, Xie L, Hu Q. Coordinate-free circumnavigation of a moving target via a PD-like controller. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 2012−2025 doi: 10.1109/TAES.2021.3127858
    [14] Jain P, Peterson C K, Beard R W. Encirclement of moving targets using noisy range and bearing measurements. Journal of Guidance, Control, and Dynamics, 2022, 45(8): 1399−1414 doi: 10.2514/1.G006403
    [15] Ranjan P K, Sinha A, Cao Y. Robust UAV guidance law for safe target circumnavigation with limited information and autopilot lag considerations. In: Proceeding of AIAA SCITECH, Florida, USA, 2024: 0124
    [16] Ju S, Wang J, Dou L. Enclosing control for multiagent systems with a moving target of unknown bounded velocity. IEEE Transactions on Cybernetics, 2022, 52(11): 11561−11570 doi: 10.1109/TCYB.2021.3072031
    [17] Jiang Y, Peng Z, Liu L, Wang D, Zhang F. Safety-critical cooperative target enclosing control of autonomous surface vehicles based on finite-time fuzzy predictors and input-to-state safe high-order control barrier functions. IEEE Transactions on Fuzzy Systems, 2024, 32(3): 816−830 doi: 10.1109/TFUZZ.2023.3309706
    [18] Dou L, Yu X, Liu L, Wang X, Feng G. Moving-target enclosing control for mobile agents with collision avoidance. IEEE Transactions on Control of Network Systems, 2021, 8(4): 1669−1679 doi: 10.1109/TCNS.2021.3078120
    [19] Lu K, Dai S L, Jin X. Cooperative constrained enclosing control of multi robot systems in obstacle environments, IEEE Transactions on Control of Network Systems, 2024, 11(2): 718–730
    [20] Olfati-Saber R, Murray R M. Consensus Problems in Networks of Agents with Switching Topology and Time-Delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520−1533 doi: 10.1109/TAC.2004.834113
    [21] Lian B, Y. Wan, Y. Zhang, M. Liu, F. L. Lewis, and T. Chai. Distributed Kalman consensus filter for estimation with moving targets. IEEE Transactions on Automatic Control, 2022, 52(6): 5242−5254
    [22] Li Y, Li S. Self-localization for distributed systems based on the relative measurement information. In: Proceeding of 2022 41st Chinese Control Conference, Hefei, China: IEEE Press, 2022: 4778–4783
    [23] Liu F, Guo C, Meng W, Su R, Li H. Moving-target circum-navigation using adaptive neural anti-synchronization control via distance-only measurements. IEEE Transactions on Cybernetics, 2024, 54(1): 308−318 doi: 10.1109/TCYB.2023.3234366
    [24] Li H L, Cai Y W, Hong J C, Peng X, Cheng H, Zhu X M. VG-Swarm: A vision-based gene regulation network for UAVs swarm behavior emergence. IEEE Robotics and Automation Letters, 2023, 8(3): 1175−1182 doi: 10.1109/LRA.2023.3236565
    [25] Mirzaeinia A, Heppner F, Hassanalian M. An Analytical Study on Leader and Follower Switching in V-Shaped Canada Goose Flocks for Energy Management Purposes. Swarm Intelligence, 2020, 14: 117−141 doi: 10.1007/s11721-020-00179-x
    [26] Pennisi E. How Did Cooperative Behavior Evolve?. Science, 2005, 309(5731): 93−93 doi: 10.1126/science.309.5731.93
    [27] Shanghai Jiao Tong University, 125 Questions: Exploration and Discovery. Science/AAAS Custom Publishing Office, 2021
    [28] 蒲志强, 易建强, 刘振, 丘腾海, 孙金林, 李非墨. 知识和数据协同驱动的群体智能决策方法研究综述. 自动化学报, 2022, 48(3): 627-640

    Pu Z Q, Yi J Q, Liu Z, Qiu T H, Sun J L, Li F M. Knowledge-based and data-driven integrating methodologies for collective intelligence decision making: A survey. Acta Automatica Sinica, 2022, 48(3): 627−643
    [29] Mogilner A, Edelstein-Keshet L, Bent L, Spiros A. Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation. Journal of Mathematical Biology, 2003, 47(4): 353−389 doi: 10.1007/s00285-003-0209-7
    [30] 陈波, 张辉, 江一鸣, 钟杭, 王耀南. 基于分层仿生神经网络的多机器人协同区域搜索算法. 自动化学报, 2025, 51(4): 890−902 doi: 10.16383/j.aas.c240458

    Chen B, Zhang H, Jiang Y M, Zhong H, Wang Y N. A hierarchical bio-inspired neural network based multi-robot cooperative area search algorithm. Acta Automatica Sinica, 2025, 51(4): 890−902 doi: 10.16383/j.aas.c240458
    [31] Miao Z, Wang Y, Fierro R. Cooperative circumnavigation of a moving target with multiple nonholonomic robots using backstepping design. Systems & Control Letters, 2017, 103: 58−65 doi: 10.1016/j.sysconle.2017.03.004
  • 加载中
计量
  • 文章访问数:  15
  • HTML全文浏览量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-28
  • 录用日期:  2025-12-09
  • 网络出版日期:  2026-01-16

目录

    /

    返回文章
    返回