2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市污水处理进水过程自适应恒压控制

韩红桂 季维宇 刘峥 孙浩源 伍小龙

韩红桂, 季维宇, 刘峥, 孙浩源, 伍小龙. 城市污水处理进水过程自适应恒压控制. 自动化学报, 2025, 51(12): 1000−1011 doi: 10.16383/j.aas.c250359
引用本文: 韩红桂, 季维宇, 刘峥, 孙浩源, 伍小龙. 城市污水处理进水过程自适应恒压控制. 自动化学报, 2025, 51(12): 1000−1011 doi: 10.16383/j.aas.c250359
Han Hong-Gui, Ji Wei-Yu, Liu Zheng, Sun Hao-Yuan, Wu Xiao-Long. Adaptive constant pressure control for the influent process of municipal wastewater treatment. Acta Automatica Sinica, 2025, 51(12): 1000−1011 doi: 10.16383/j.aas.c250359
Citation: Han Hong-Gui, Ji Wei-Yu, Liu Zheng, Sun Hao-Yuan, Wu Xiao-Long. Adaptive constant pressure control for the influent process of municipal wastewater treatment. Acta Automatica Sinica, 2025, 51(12): 1000−1011 doi: 10.16383/j.aas.c250359

城市污水处理进水过程自适应恒压控制

doi: 10.16383/j.aas.c250359 cstr: 32138.14.j.aas.c250359
基金项目: 国家自然科学基金(62125301, 62021003, 62103010, 62303024, 62473011, 92467205, U24A20275), 青年北京学者项目(037), 北京市科技新星计划(20240484694, 20250484938), 北京市自然科学基金(L253010, Z250021)资助
详细信息
    作者简介:

    韩红桂:北京工业大学信息科学技术学院教授. 主要研究方向为城市污水处理过程智能优化控制, 神经网络结构设计与优化. 本文通信作者. E-mail: rechardhan@bjut.edu.cn

    季维宇:北京工业大学信息科学技术学院博士研究生. 主要研究方向为预设时间控制, 容错控制. E-mail: jiweiyu0215@163.com

    刘峥:北京工业大学信息科学技术学院教授. 主要研究方向为神经网络, 智能系统, 过程系统的建模和控制. E-mail: liuzheng@bjut.edu.cn

    孙浩源:北京工业大学信息科学技术学院教授. 主要研究方向为城市污水处理过程网络化控制, 随机采样控制. E-mail: sunhaoyuan@bjut.edu.cn

    伍小龙:北京工业大学信息科学技术学院教授. 主要研究方向为城市污水处理过程智能自组织控制. E-mail: wuxl@bjut.edu.cn

Adaptive Constant Pressure Control for the Influent Process of Municipal Wastewater Treatment

Funds: Supported by National Natural Science Foundation of China (62125301, 62021003, 62103010, 62303024, 62473011, 92467205, U24A20275), the Youth Beijing Scholars Program (037), Beijing Nova Program (20240484694, 20250484938), and Beijing Natural Science Foundation (L253010, Z250021)
More Information
    Author Bio:

    HAN Hong-Gui Professor at the School of Information Science and Technology, Beijing University of Technology. His research interest covers intelligent optimal control of municipal wastewater treatment process, and structure design and optimization of neural networks. Corresponding author of this paper

    JI Wei-Yu Ph.D. candidate at the School of Information Science and Technology, Beijing University of Technology. His research interest covers predefined-time control, and fault-tolerant control

    LIU Zheng Professor at the School of Information Science and Technology, Beijing University of Technology. His research interest covers neural networks, intelligent systems, and modeling and control in process systems

    SUN Hao-Yuan Professor at the School of Information Science and Technology, Beijing University of Technology. His research interest covers networked control of municipal wastewater treatment process, and stochastic sampled-data control

    WU Xiao-Long Professor at the School of Information Science and Technology, Beijing University of Technology. His main research interest is intelligent self-organizing control of municipal wastewater treatment process

  • 摘要: 针对城市污水处理进水过程总管压力难以稳定控制, 导致污水处理过程运行不稳定的问题, 提出一种自适应恒压控制(Adaptive constant pressure control, ACPC)方法. 首先, 建立基于时滞特性的城市污水处理进水过程控制模型, 设计基于帕德逼近的等效变换模型, 动态补偿运行过程滞后的影响. 其次, 提出基于障碍李雅普诺夫函数的ACPC方法, 设计转移策略放宽初始总管压力对控制器约束, 保障进水过程在规定压力范围内运行. 然后, 提出神经网络自适应动态调整算法, 根据进水过程运行状态实时调整控制参数, 降低膜组器清洗操作导致的总管压力波动, 提升进水过程的稳定性. 最后, 给出控制器稳定性分析, 证明进水过程中所有变量是半全局最终有界的, 实现总管压力的稳定控制. 实验结果表明, 该方法能够保证城市污水处理进水过程稳定运行.
  • 图  1  城市污水处理进水过程的ACPC框图

    Fig.  1  Block diagram of ACPC for influent process in municipal wastewater treatment

    图  2  进水总管压力控制结果

    Fig.  2  The control results of the influent main pipe pressure

    图  5  进水泵频率控制效果

    Fig.  5  The control effect of the influent pump frequency

    图  3  进水总管压力跟踪控制误差结果

    Fig.  3  The tracking control error results of influent pipe pressure

    图  4  神经网络权重范数曲线

    Fig.  4  Neural network weight norm curve

    图  6  系统界面

    Fig.  6  System interface

    图  7  进水总管压力对比效果

    Fig.  7  The comparison effect of the influent main pipe pressure

    图  13  蓄水池液位控制效果

    Fig.  13  The control effect of the reservoir liquid level

    图  8  进水总管压力控制效果

    Fig.  8  The control effect of the influent main pipe pressure

    图  9  进水总管压力对比效果

    Fig.  9  The comparison effect of the influent main pipe pressure

    图  10  进水总管压力跟踪误差对比效果

    Fig.  10  The comparison effect of the influent main pipe pressure tracking error

    图  11  进水泵频率控制效果

    Fig.  11  The control effect of the influent pump frequency

    图  12  总管流量控制效果

    Fig.  12  The control effect of the main pipe flow

    表  1  控制性能对比

    Table  1  Comparison of the control performances

    方法 IAE (kPa) ISE (kPa) MaxDev (kPa)
    ACPC 0.5359 0.5374 1.9265
    PID 9.7240 2.8241 7.9069
    下载: 导出CSV
  • [1] 韩红桂, 王玉爽, 刘峥, 孙浩源, 乔俊飞. 知识和数据驱动的污水处理反硝化脱氮过程协同优化控制. 自动化学报, 2024, 50(6): 1221−1233

    Han Hong-Gui, Wang Yu-Shuang, Liu Zheng, Sun Hao-Yuan, Qiao Jun-Fei. Knowledge-data-driven cooperative optimal control for wastewater treatment denitrification process. Acta Automatica Sinica, 2024, 50(6): 1221−1233
    [2] Han H G, Ji W Y, Liu Z, Sun H Y, Qiao J F. Predefined-time adaptive neural control for nonlinear systems with unknown interconnection. IEEE Transactions on Cybernetics, 2025, 55(6): 2608−2620 doi: 10.1109/TCYB.2025.3552926
    [3] Han H G, Liu Z, Lu W, Hou Y, Qiao J F. Dynamic MOPSO-based optimal control for wastewater treatment process. IEEETransactions on Cybernetics, 2021, 51(5): 2518−2528
    [4] Borja S, Albert G, Xavier F, Ulf J, Juan A B. A plant-widemodel describing GHG emissions and nutrient recovery options for water resource recovery facilities. Water Research, 2022, 215: Article No. 118223 doi: 10.1016/j.watres.2022.118223
    [5] 刘玉发, 刘勇华, 苏春翌, 鲁仁全. 一类具有未知幂次的高阶不确定非线性系统的自适应控制. 自动化学报, 2022, 48(8): 2018−2027

    Liu Yu-Fa, Liu Yong-Hua, Su Chun-Yi, Lu Ren-Quan. Adaptive control for a class of high-order uncertain nonlinear systems with unknown powers. Acta Automatica Sinica, 2022, 48(8): 2018−2027
    [6] Zhu Z Z, Lin Y L, Zhang Y. Adaptive quasi-fixed-time integral terminal sliding mode control for nonlinear systems. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2024, 71(3): 1366−1370 doi: 10.1109/TCSII.2023.3327629
    [7] Wan X B, Wang Z Q, Wei F, Jin L, Zhang C K, Wu M. Hybrid variables-dependent event-based efficient model predictive load frequency control for power systems. IEEE Transactions on Industrial Informatics, 2024, 20(11): 12771−12782 doi: 10.1109/TII.2024.3424490
    [8] You S, Kim W. Adaptive learning gain-based control for nonlinear systems with external disturbances: Application to PMSM. IEEE Transactions on Control Systems Technology, 2023, 31(3): 1427−1434 doi: 10.1109/TCST.2022.3208446
    [9] 韩红桂, 秦晨辉, 孙浩源, 乔俊飞. 城市污水处理过程自适应滑模控制. 自动化学报, 2023, 49(5): 1010−1018

    Han Hong-Gui, Qin Chen-Hui, Sun Hao-Yuan, Qiao Jun-Fei. Adaptive sliding mode control for municipal wastewater treat ment process. Acta Automatica Sinica, 2023, 49(5): 1010−1018
    [10] Wu X L, Han W H, Yang H Y, et al. Robust soft constrained model predictive control and its application in wastewater treatment processes. IEEE Transactions on Automation Science and Engineering, 2025, 22: 13198−13211 doi: 10.1109/TASE.2025.3552421
    [11] Li D P, Han H G, Qiao J F. Composite boundary structure-based tracking control for nonlinear state-dependent constrained systems. IEEE Transactions on Automatic Control, 2024, 69(8): 5686−5693 doi: 10.1109/TAC.2024.3372888
    [12] Hou Q H, Dong J X. Dynamic event-triggered fixed-time tracking control for state-constrained nonlinear systems with dead zone based on fast fixed-time filters. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(1): 634−643 doi: 10.1109/TSMC.2023.3317406
    [13] Wang W, Li Y M. Distributed fuzzy optimal consensus control of state-constrained nonlinear strict-feedback systems. IEEE Transactions on Cybernetics, 2023, 53(5): 2914−2929 doi: 10.1109/TCYB.2021.3140104
    [14] Qiu J B, Sun K K, Rudas I J, Gao H J. Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Transactions on Cybernetics, 2020, 50(7): 2905−2915 doi: 10.1109/TCYB.2019.2944761
    [15] Zhao L, Liu G Q. Adaptive finite-time attitude tracking control for state constrained rigid spacecraft systems. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2021, 68(12): 3552−3556 doi: 10.1109/TCSII.2021.3070799
    [16] Jin X. Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Transactions on Automatic Control, 2019, 64(7): 3046−3053 doi: 10.1109/TAC.2018.2874877
    [17] Zhang Y H, Xie L P, Xie X P, Sun Z Y, Zhang K J. Fuzzy adaptive control for stochastic nonstrict feedback systems with multiple time-delays: A novel Lyapunov-Krasovskii method. IEEE Transactions on Fuzzy Systems, 2024, 32(6): 3815−3824 doi: 10.1109/TFUZZ.2024.3384588
    [18] Xu K, Wang H Q, Liu P X P. Adaptive fixed-time control for high-order stochastic nonlinear time-delay systems: An improved Lyapunov-Krasovskii function. IEEE Transactions on Cybernetics, 2024, 54(2): 776−786 doi: 10.1109/TCYB.2023.3337792
    [19] Peng Y R, Xu S Y, Park J H. Adaptive fuzzy control for stochastic nonlinear systems with delayed input and delayed state via improved Lyapunov-Krasovskii function. IEEE Transactions on Fuzzy Systems, 2025, 33(2): 570−579 doi: 10.1109/TFUZZ.2024.3486574
    [20] Ma J L, Xu S Y, Ma Q, Zhang Z Q. Event-triggered adaptive neural network control for nonstrict-feedback nonlinear time-delay systems with unknown control directions. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(10): 4196−4205 doi: 10.1109/TNNLS.2019.2952709
    [21] 杨彬, 周琪, 曹亮, 鲁仁全. 具有指定性能和全状态约束的多智能体系统事件触发控制. 自动化学报, 2019, 45(8): 1527−1535

    Yang Bin, Zhou Qi, Cao Liang, Lu Ren-Quan. Event-triggered control for multi-agent systems with prescribed performance and full state constraints. Acta Automatica Sinica, 2019, 45(8): 1527−1535
    [22] Kim G, Lee H, Won D, Tomizuka M, Kim W. Singularity-free nonlinear position control using time-varying barrier Lyapunov function for permanent magnet synchronous motors. IEEE Transactions on Transportation Electrification, 2025, 11(1): 3454−3465 doi: 10.1109/TTE.2024.3441832
    [23] Li D P, Han H G, Qiao J F. Deterministic learning-based adaptive neural control for nonlinear full-state constrained systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 5002−5011 doi: 10.1109/TNNLS.2021.3126320
    [24] 毛艳岭, 富月. 非线性系统自适应最优切换控制方法. 自动化学报, 2023, 49(10): 2122−2135

    Mao Yan-Ling, Fu Yue. Adaptive optimal switching control of nonlinear systems. Acta Automatica Sinica, 2023, 49(10): 2122−2135
    [25] Lv J X, Ju X Z, Wang C H. Neural network-based nonconservative predefined-time backstepping control for uncertain strict-feedback nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 16562−16573 doi: 10.1109/TNNLS.2023.3296194
    [26] 赵光同, 曹亮, 周琪, 李鸿一. 具有未建模动态的互联大系统事件触发自适应模糊控制. 自动化学报, 2021, 47(8): 1932−1942

    Zhao Guang-Tong, Cao Liang, Zhou Qi, Li Hong-Yi. Event-triggered adaptive fuzzy control for interconnected large-scale systems with unmodeled dynamics. Acta Automatica Sinica, 2021, 47(8): 1932−1942
    [27] 王祚, 朱延正, 陈新开, 杨帆, 苏春翌. 双端切换拓扑下基于二值通信的多智能体系统容错控制. 自动化学报, 2025, 51(6): 1347−1358

    Wang Zuo, Zhu Yan-Zheng, Chen Xin-Kai, Yang Fan, Su Chun-Yi. Fault-tolerant control for multi-agent systems based on binary-valued communication under dual-terminal switching topologies. Acta Automatica Sinica, 2025, 51(6): 1347−1358
    [28] 李冬妮, 孙佳月, 闫宇晴, 张化光. 基于混合双端事件触发机制的协同控制策略研究. 自动化学报, 2025, 51(4): 792−803

    Li Dong-Ni, Sun Jia-Yue, Yan Yu-Qing, Zhang Hua-Guang. Cooperative control strategy research based on hybrid dual-terminal event-triggered mechanism. Acta Automatica Sinica, 2025, 51(4): 792−803
  • 加载中
计量
  • 文章访问数:  3
  • HTML全文浏览量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-29
  • 录用日期:  2025-10-09
  • 网络出版日期:  2025-11-10

目录

    /

    返回文章
    返回