|
[1]
|
陈占胜. 大规模分布式异构星群关键科学问题与智能化架构. 上海航天(中英文), 2024, 41(S1): 1−12Chen Zhan-Sheng. Key science problems and intelligent architecture of large scale distributed heterogeneous satellite clusters. Aerospace Shanghai (Chinese & English), 2024, 41(S1): 1−12
|
|
[2]
|
禹华钢, 方子希. 低轨卫星互联网: 发展、应用及新技术展望. 无线电工程, 2023, 53(11): 2699−2707 doi: 10.3969/j.issn.1003-3106.2023.11.027YU Hua-Gang, FANG Zi-Xi. LEO satellite internet: development, application and new technology prospects. Radio Engineering, 2023, 53(11): 2699−2707 doi: 10.3969/j.issn.1003-3106.2023.11.027
|
|
[3]
|
唐亮, 刘鸿鹏, 何慧东. 全球小卫星现状及发展. 国际太空, 2019(06): 36−41Tang Liang, Liu Hong-Peng, He Hui-Dong. Status and development of global small satellites. Space International, 2019(06): 36−41
|
|
[4]
|
秦子浩, 方进勇. 巨型小卫星星座对空间碎片环境的影响研究. 空间电子技术, 2021, 18(01): 87−92 doi: 10.3969/j.issn.1674-7135.2021.01.016Qin Zi-Hao, Fang Jin-Yong. Study on the effects from large constellations on space debris environment. Space Electronic Technology, 2021, 18(01): 87−92 doi: 10.3969/j.issn.1674-7135.2021.01.016
|
|
[5]
|
康利鸿, 田菁, 江碧涛. 巨星座时代遥感卫星应用技术挑战与思考. 遥感学报, 2024, 28(07): 1658−1666Kang Li-Hong, Tian Jing, Jiang Bi-Tao. Challenges and research on remote sensing satellite application technology in the Giant Constellation Era. National Remote Sensing Bulletin, 2024, 28(07): 1658−1666
|
|
[6]
|
沈大海, 蒙艳松, 边朗, 雷文英, 王瑛, 严涛, 等. 基于低轨通信星座的全球导航增强系统. 太赫兹科学与电子信息学报, 2019, 17(02): 209−215Shen Da-Hai, Meng Yan-Song, Bian Lang, Lei Wen-Ying, Wang Ying, Yan Tao, et al. A global navigation augmentation system based on LEO communication constellation. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(02): 209−215
|
|
[7]
|
高梓贺, 姚海鹏, 张磊, 石钰林, 王富, 陶滢. 低轨巨型星座体系架构设计与关键技术分析. 天地一体化信息网络, 2024, 5(02): 43−52 doi: 10.11959/j.issn.2096-8930.2024015Gao Zi-He, Yao Hai-Peng, Zhang Lei, Shi Yu-Lin, Wang Fu, Tao Ying. Architecture design and key technologies analysis of LEO satellite mega-constellations. Space-Integrated-Ground Information Networks, 2024, 5(02): 43−52 doi: 10.11959/j.issn.2096-8930.2024015
|
|
[8]
|
孙耀华, 冯昕澳, 彭木根. 低轨巨型星座组网: 挑战与关键技术. 天地一体化信息网络, 2024, 5(04): 57−74 doi: 10.11959/j.issn.2096-8930.2024039Sun Yao-Hua, Feng Xin-Ao, Peng Mu-Gen. Mega LEO satellite constellations networking: challenges and key technologies. Space-Integrated-Ground Information Networks, 2024, 5(04): 57−74 doi: 10.11959/j.issn.2096-8930.2024039
|
|
[9]
|
Marshall M, Pellegrino S. Reduced-order modeling for flexible spacecraft deployment and dynamics. In: Proceedings of AIAA Scitech 2021 Forum. Nashville, TN, USA: AIAA, 2021. 1385
|
|
[10]
|
Hearn H C. Development and validation of fluid/thermodynamic models for spacecraft propulsion systems. Journal of Propulsion and Power, 2001, 17(3): 527−533 doi: 10.2514/2.5807
|
|
[11]
|
Dai Z H, Wang L, Yang S S, Zhao J W. Multi-signal model in application of spacecraft power system testability. In: Proceedings of AIAA Modeling and Simulation Technologies Conference. Grapevine, Texas, USA: AIAA, 2016. 4138
|
|
[12]
|
Xu X, Chen N. A state-space-based prognostics model for lithiumion battery degradation. Reliability Engineering & System Safety, 2017, 159: 47−57 doi: 10.1016/j.ress.2016.10.026
|
|
[13]
|
Goebel K, Saha B, Saxena A, Jose R C, Jon P C. Prognostics in battery health management. IEEE instrumentation & measurement magazine, 2008, 11(4): 33−40 doi: 10.1109/MIM.2008.4579269
|
|
[14]
|
Kamruzzaman M, Zhang X, Abdelmalak M, Shi D, Benidris M. A data-driven accurate battery model to use in probabilistic analyses of power systems. Journal of Energy Storage, 2021, 44: 103292 doi: 10.1016/j.est.2021.103292
|
|
[15]
|
叶正宇, 程月华, 韩笑冬, 姜斌. 深空探测航天器姿态控制系统故障定位. 控制理论与应用, 2019, 36(12): 2093−2099Ye Zheng-Yu, Cheng Yue-Hua, Han Xiao-Dong, Jiang Bin. Fault location for attitude control systems of deep space exploration satellites. Control Theory & Applications, 2019, 36(12): 2093−2099
|
|
[16]
|
Koscielny J M, Syfert M, Rostek K, Sztyber A. Fault isolability with different forms of the faults-symptoms relation. International Journal of Applied Mathematics and Computer Science, 2016, 26(4): 815 doi: 10.1515/amcs-2016-0058
|
|
[17]
|
Ji H, He X, Shang J, Zhou D. Incipient sensor fault diagnosis using moving window reconstruction-based contribution. Industrial & Engineering Chemistry Research, 2016, 55(10): 2746−2759 doi: 10.1021/acs.iecr.5b03944
|
|
[18]
|
Liu J, Hua Y, Li Q, Ren Z. Fault diagnosability qualitative analysis of spacecraft based on temporal fault signature matrix. In: Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference. Nanjing, China: IEEE, 2016. 1496-1500
|
|
[19]
|
Gehin A-L, Hu H, Bayart M. A self-updating model for analysing system reconfigurability. Engineering Applications of Artificial Intelligence, 2012, 25(1): 20−30 doi: 10.1016/j.engappai.2011.08.001
|
|
[20]
|
屠园园, 王大轶, 张香燕, 李嘉兴, 黄晓峰. 航天器的可重构性与自主重构方法. 航空学报, 2023, 44(23): 135−148 doi: 10.7527/S1000-6893.2023.28855Tu Yuan-Yuan, Wang Da-Yi, Zhang Xiang-Yan, Li Jia-Xing, Huang Xiao-Feng. Reconfigurability and autonomous reconfiguration methods of spacecraft. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 135−148 doi: 10.7527/S1000-6893.2023.28855
|
|
[21]
|
Wang D, Liu C. Reconfigurability analysis method for spacecraft autonomous control. Mathematical Problems in Engineering, 2014, 2014(1): 724235 doi: 10.1155/2014/724235
|
|
[22]
|
Loureiro R, Merzouki R, Bouamama B O. Bond graph model based on structural diagnosability and recoverability analysis: Application to intelligent autonomous vehicles. IEEE Transactions on Vehicular Technology, 2012, 61(3): 986−997 doi: 10.1109/TVT.2012.2186472
|
|
[23]
|
Abdesselam I, Haffaf H. Hypergraph reconfigurability analysis. Ieri Procedia, 2014, 6: 22−32 doi: 10.1016/j.ieri.2014.03.005
|
|
[24]
|
刘文静, 刘成瑞, 王南华, 王大轶. 定量与定性相结合的动量轮故障可诊断性评价. 中国空间科学技术, 2011, 31(04): 54−63 doi: 10.3780/j.issn.1000-758X.2011.04.008Liu Wen-Jing, Liu Chen-Rui, Wang Nan-Hua, Wang Da-Yi. Quantitative and qualitative model based fault diagnosability evaluation of momentum wheel. Chinese Space Science and Technology, 2011, 31(04): 54−63 doi: 10.3780/j.issn.1000-758X.2011.04.008
|
|
[25]
|
Eriksson D, Frisk E, Krysander M. A method for quantitative fault diagnosability analysis of stochastic linear descriptor models. Automatica, 2013, 49(6): 1591−1600 doi: 10.1016/j.automatica.2013.02.045
|
|
[26]
|
Zhong M, Song Y, Xue T, Yang R, Li W. Parity space-based fault detection by minimum error minimax probability machine. IFAC-PapersOnLine, 2018, 51(24): 1292−1297 doi: 10.1016/j.ifacol.2018.09.568
|
|
[27]
|
Wang D, Fu F, Li W, Tu Y, Liu C, Liu W. A review of the diagnosability of control systems with applications to spacecraft. Annual Reviews in control, 2020, 49: 212−229 doi: 10.1016/j.arcontrol.2020.03.004
|
|
[28]
|
符方舟, 李嘉兴, 张香燕, 杨盛庆, 王文妍, 郑翰清. 面向推力器故障检测的卫星编队星间链路设计. 上海航天(中英文), 2022, 39(06): 66−74 doi: 10.19328/j.cnki.2096‑8655.2022.06.008Fu Fang-Zhou, Li Jia-Xing, Zhang Xiang-Yan, Yang Sheng-Qing, Wang Wen-Yan, Zheng Han-Qing. An inter-satellite link design method of satellite formations under thruster fault detection. Aerospace Shanghai (Chinese & English), 2022, 39(06): 66−74 doi: 10.19328/j.cnki.2096‑8655.2022.06.008
|
|
[29]
|
Richter J H, Heemels W, Van De Wouw N, Lunze J. Reconfigurable control of piecewise affine systems with actuator and sensor faults: stability and tracking. Automatica, 2011, 47(4): 678−691 doi: 10.1016/j.automatica.2011.01.048
|
|
[30]
|
Tu Y, Wang D, Fu F, Li W. Reconfigurability evaluation for disturbance rejection control systems under actuator outages. Journal of the Franklin Institute, 2021, 358(8): 4239−4256 doi: 10.1016/j.jfranklin.2020.06.030
|
|
[31]
|
Staroswiecki M. On reconfigurability with respect to actuator failures. IFAC Proceedings Volumes, 2002, 35(1): 257−262 doi: 10.3182/20020721-6-es-1901.00774
|
|
[32]
|
Wu N E, Zhou K, Salomon G. Control reconfigurability of linear time-invariant systems. Automatica, 2000, 36(11): 1767−1771 doi: 10.1016/S0005-1098(00)00080-7
|
|
[33]
|
Jiang B, Zhang K, Shi P. Integrated fault estimation and accommodation design for discrete-time Takagi–Sugeno fuzzy systems with actuator faults. IEEE Transactions on Fuzzy Systems, 2010, 19(2): 291−304 doi: 10.1109/tfuzz.2010.2095861
|
|
[34]
|
Lan J, Patton R J. A decoupling approach to integrated fault-tolerant control for linear systems with unmatched non-differentiable faults. Automatica, 2018, 89: 290−299 doi: 10.1016/j.automatica.2017.12.011
|
|
[35]
|
Liu Y, Yang G-H. Integrated design of fault estimation and fault-tolerant control for linear multi-agent systems using relative outputs. Neurocomputing, 2019, 329: 468−475 doi: 10.1016/j.neucom.2018.11.005
|
|
[36]
|
Morbidi F, Mariottini G L, Prattichizzo D. Observer design via immersion and invariance for vision-based leader–follower formation control. Automatica, 2010, 46(1): 148−154 doi: 10.1016/j.automatica.2009.10.016
|
|
[37]
|
Wang X, Tan C P, Wu F, Wang J. Fault-tolerant attitude control for rigid spacecraft without angular velocity measurements. IEEE Transactions on Cybernetics, 2019, 51(3): 1216−1229
|
|
[38]
|
Ghasemi S, Khorasani K. Fault detection and isolation of the attitude control subsystem of spacecraft formation flying using extended Kalman filters. International Journal of Control, 2015, 88(10): 2154−2179 doi: 10.1080/00207179.2015.1039591
|
|
[39]
|
Benninghoff H, Boge T. Rendezvous involving a non-cooperative, tumbling target: Estimation of moments of inertia and center of mass of an unknown target. In: Proceedings of 25th International Symposium on Space Flight Dynamics. Munich, Germany: 2015. 25
|
|
[40]
|
符方舟, 王大轶, 李文博. 基于卡尔曼滤波器组的多重故障诊断方法研究. 控制理论与应用, 2017, 34(05): 586−593 doi: 10.7641/CTA.2017.60675Fu Fang-Zhou, Wang Da-Yi, Li Wen-Bo. Multiple fault detection and isolation based on Kalman filters. Control Theory & Applications, 2017, 34(05): 586−593 doi: 10.7641/CTA.2017.60675
|
|
[41]
|
阮仁桂, 贾小林, 朱俊, 呼延宗泊, 冯来平, 李杰. 联合星地与星间Ka伪距的北斗三号卫星一体化定轨和时间同步. 测绘学报, 2020, 49(03): 292−299Ruan Reng-Gui, Jia Xiao-Lin, Zhu Jun, Huyan Zong-Bo, Feng Lai-Ping, Li Jie. Integrated orbit determination and time synchronization for BDS-3 satellites with satellite-ground and inter-satellite one-way Ka-pseudoranges. Acta Geodaetica et Cartographica Sinica, 2020, 49(03): 292−299
|
|
[42]
|
Tang C P, Hu X G, Zhou S S, Liu L, Pan J Y, Chen L C, et al. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements. Journal of Geodesy, 2018, 92(10): 1155−1169 doi: 10.1007/s00190-018-1113-7
|
|
[43]
|
孔祥磊, 孙弋舒, 吴学友, 高建威, 田志新. 大规模高动态星座网络信息同步方法. 中国空间科学技术(中英文), 2025, 45(1): 135−142 doi: 10.16708/j.cnki.1000-758X.2025.0013Kong Xiang-Lei, Sun Yi-Shu, Wu Xue-You, Gao Jian-Wei, Tian Zhi-Xin. Information synchronization method for large scale and high dynamic constellation network. Chinese Space Science and Technology, 2025, 45(1): 135−142 doi: 10.16708/j.cnki.1000-758X.2025.0013
|
|
[44]
|
郭雷, 李文硕, 崔洋洋, 朱玉凯, 章健淳, 余翔, 等. 动态闭环不确定性量化理论与智能无人系统应用. 中国科学: 技术科学, 2025, 55(01): 1−13 doi: 10.1360/SST-2024-0155Guo Lei, Li Wen-Shuo, Cui Yang-Yang, Zhu Yu-Kai, Zhang Jian-Chun, Yu Xiang, et al. Dynamic closed-loop uncertainty quantification theory with intelligent unmanned system applications. Sci Sin Tech, 2025, 55(01): 1−13 doi: 10.1360/SST-2024-0155
|
|
[45]
|
王兆龙, 朱文山, 牟金震, 韩飞, 敬忠良. 多航天器协同观测的空间目标状态估计研究进展. 中国科学: 物理学力学天文学, 2025, 55(02): 23−43Wang Zhao-Long, Zhu Wen-Shan, Mu Jin-Zhen, Han Fei, Jing Zhong-Liang. An overview of the state estimation for space non-cooperative target with multi-spacecraft cooperative observation. Sci Sin-Phys Mech Astron, 2025, 55(02): 23−43
|
|
[46]
|
高曌, 高杨, 高梓贺, 陶滢. 应用动态感知的卫星分布式集群管理平台设计与实现. 航天器工程, 2024, 33(2): 125−132Gao Zhao, Gao Yang, Gao Zi-He, Tao Ying. Design and implementation of satellite distributed cluster management platform using dynamic perception. Spacecraft Engineering, 2024, 33(2): 125−132
|
|
[47]
|
隋维舜, 段广仁, 张卯瑞. 多航天器系统分布式固定时间输出反馈姿态协同跟踪控制. 控制与决策, 2021, 36(5): 1049−1058 doi: 10.13195/j.kzyjc.2019.0968Sui Wei-Shun, Duan Guang-Ren, Zhang Mao-Rui. Distributed fixed-time output feedback attitude coordination tracking control for multiple rigid spacecraft. Control and Decision, 2021, 36(5): 1049−1058 doi: 10.13195/j.kzyjc.2019.0968
|
|
[48]
|
Auer S, Reinartz P, Schmitt M. Object-related alignment of heterogeneous image data in remote sensing. In: Proceedings of 21st International Conference on Information Fusion. Cambridge, UK: IEEE, 2018. 1608-1615
|
|
[49]
|
Liu Z J, Qiu Q, Li J, Wang L Z, Plaza A. Geographic optimal transport for heterogeneous data: Fusing remote sensing and social media. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6936−6945 doi: 10.1109/tgrs.2020.3031337
|
|
[50]
|
项新建, 李可晗, 曹楹, 黄炳强, 郑永平. 基于支持度和确定度的异构数据融合方法. 传感技术学报, 2023, 36(8): 1243−1249 doi: 10.3969/j.issn.1004-1699.2023.08.010Xiang Xin-Jian, Li Ke-Han, Cao Ying, Huang Bing-Qiang, Zheng Yong-Ping. Heterogeneous data fusion method based on support and certainty. Chinese Journal of Sensors and Actuators, 2023, 36(8): 1243−1249 doi: 10.3969/j.issn.1004-1699.2023.08.010
|
|
[51]
|
朱文山, 牟金震, 李爽, 韩飞. 基于深度学习的航天器位姿估计研究进展. 宇航学报, 2023, 44(11): 1633−1644Zhu Wen-Shan, Mu Jin-Zhen, Li Shuang, Han Fei. Review and prospect of spacecraft pose estimation based on deep learning. Journal of Astronautics, 2023, 44(11): 1633−1644
|
|
[52]
|
Schnitzer F, Janschek K, Willich G. Experimental results for image-based geometrical reconstruction for spacecraft rendezvous navigation with unknown and uncooperative target spacecraft. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Algarve, Portugal: IEEE, 2012. 5040-5045
|
|
[53]
|
Pourtakdoust S H, Fakhari Mehrjardi M, Hajkarim M H, Gourabi F N. Advanced fault detection and diagnosis in spacecraft attitude control systems: Current state and challenges. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023, 237(12): 2679−2699 doi: 10.1177/09544100231157132
|
|
[54]
|
Khorasgani H G, Menhaj M B, Talebi H, Nejad F B. Neural-network-based sensor fault detection & isolation for nonlinear hybrid systems. IFAC Proceedings Volumes, 2012, 45(20): 1029−1034 doi: 10.3182/20120829-3-MX-2028.00203
|
|
[55]
|
Li Z, Ma L, Khorasani K. Fault diagnosis of an actuator in the attitude control subsystem of a satellite using neural networks. In: Proceedings of 2007 International Joint Conference on Neural Networks. Orlando, FL, USA: IEEE, 2007. 2658-2663
|
|
[56]
|
Augenstein S, Rock S M. Improved frame-to-frame pose tracking during vision-only SLAM/SFM with a tumbling target. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 3131-3138
|
|
[57]
|
Yingxiao L, Ju H, Ping M, Jiang R Y. Target localization method of non-cooperative spacecraft on on-orbit service. Chinese Journal of Aeronautics, 2022, 35(11): 336−348 doi: 10.1016/j.cja.2022.04.001
|
|
[58]
|
Yang D, Zhu L, Liu Z, Wang J. A condition quantitative assessment method of spacecraft electrical power subsystem with fuzzy theory. In: Proceedings of 2021 International Conference on Advanced Electrical Equipment and Reliable Operation. Xi'an, China: IEEE, 2021. 1-6
|
|
[59]
|
杨爱武, 李战武, 徐安, 吕跃, 奚之飞. 基于RS-CRITIC的空战目标威胁评估. 北京航空航天大学学报, 2020, 46(12): 2357−2365Yang Ai-Wu, Li Zhan-Wu, Xu An, Lü Yue, Xi Zhi-Fei. Threat assessment of air combat target based on RS-CRITIC. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2357−2365
|
|
[60]
|
Sun H, Xie X, Sun T, et al. Dynamic Bayesian network threat assessment for warship formation: a data analysis method. International Journal of High Performance Systems Architecture, 2018, 8(1-2): 71−81 doi: 10.1504/ijhpsa.2018.10015197
|
|
[61]
|
Nasrolahi S S, Abdollahi F. Sensor fault detection and recovery in satellite attitude control. Acta Astronautica, 2018, 145: 275−283 doi: 10.1016/j.actaastro.2018.01.002
|
|
[62]
|
周弘波, 张金成. 基于组合权重的灰色目标威胁评估. 火力与指挥控制, 2018, 43(10): 143−146 doi: 10.3969/j.issn.1002-0640.2018.10.028Zhou Hong-Bo, Zhang Jin-Cheng. Evaluation of target threat based on combinational weight and grey correlation. Fire Control & Command Control, 2018, 43(10): 143−146 doi: 10.3969/j.issn.1002-0640.2018.10.028
|
|
[63]
|
汪伟, 顾竹鑫, 李海波. 基于层次分析法的低空慢速小目标威胁评估方法. 信息化研究, 2019, 45(4): 20−24Wang Wei, Gu Zhu-Xin, Li Hai-Bo. Threat evaluation for small target at low latitude and low speed based on analytic hierarchy process. Information Research, 2019, 45(4): 20−24
|
|
[64]
|
Gao Y, Li D-S, Zhong H. A novel target threat assessment method based on three-way decisions under intuitionistic fuzzy multi-attribute decision making environment. Engineering Applications of Artificial Intelligence, 2020, 87: 103276 doi: 10.1016/j.engappai.2019.103276
|
|
[65]
|
Xiong Y, Jiang Z, Fang H Z, Fan H Z. Research on health condition assessment method for spacecraft power control system based on SVM and cloud model. In: Proceedings of 2019 Prognostics and System Health Management Conference. Paris, France: IEEE, 2019. 143-149
|
|
[66]
|
于牧野, 初未萌, 符方舟, 吴志刚, 陈巍. 基于SCSO-BP神经网络的卫星姿态控制系统故障预测. 飞控与探测, 2024, 7(1): 37−46 doi: 10.20249/j.cnki.2096-5974.2024.01.006Yu Mu-Ye, Chu Wei-Meng, Fu Fang-Zhou, Wu Zhi-Gang, Chen Wei. Satellite attitude control system fault prediction based on SCSO-BP neural network. Flight Control & Detection, 2024, 7(1): 37−46 doi: 10.20249/j.cnki.2096-5974.2024.01.006
|
|
[67]
|
Liao L, Kottig F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Transactions on Reliability, 2014, 63(1): 191−207 doi: 10.1109/TR.2014.2299152
|
|
[68]
|
Zhang Q. Adaptive Kalman filter for actuator fault diagnosis. Automatica, 2018, 93: 333−342 doi: 10.1016/j.automatica.2018.03.075
|
|
[69]
|
徐西蒙, 杨任农, 符颖, 赵雨. 基于ELM_AdaBoost强预测器的空战目标威胁评估. 系统工程与电子技术, 2018, 40(8): 1760−1768 doi: 10.3969/j.issn.1001-506X.2018.08.14Xu Xi-Meng, Yang Ren-Nong, Fu Ying, Zhao Yu. Target threat assessment in air combat based on ELM_AdaBoost strong predictor. Systems Engineering and Electronics, 2018, 40(8): 1760−1768 doi: 10.3969/j.issn.1001-506X.2018.08.14
|
|
[70]
|
Yue L, Yang R, Zuo J, Luo H, Li Q. Air Target threat assessment based on improved moth flame optimization-gray neural network model. Mathematical Problems in Engineering, 2019(1): 4203538 doi: 10.1155/2019/4203538
|
|
[71]
|
王芳, 吴志泉, 史红权. SVM在空中目标威胁值评估中的应用. 火力与指挥控制, 2017, 42(9): 30−33Wang Fang, Wu Zhi-Quan, Shi Hong-Quan. Research on anti-air threat assessment based on SVM. Fire Control & Command Control, 2017, 42(9): 30−33
|
|
[72]
|
Chong W, Jun L, Ning J, Jun W, Hao C. A distributed cooperative dynamic task planning algorithm for multiple satellites based on multi-agent hybrid learning. Chinese Journal of Aeronautics, 2011, 24(4): 493−505 doi: 10.1016/S1000-9361(11)60057-5
|
|
[73]
|
朱光熙, 王港, 张超, 柴英特, 付伟, 郭争强. 基于多模态观测需求信息的遥感星群任务智能规划机制. 天地一体化信息网络, 2022, 3(03): 23−29 doi: 10.11959/j.issn.2096-8930.2022028Zhu Guang-Xi, Wang Gang, Zhang Chao, Cai Ying-Te, Fu Wei, Guo Zheng-Qiang. Intelligent planning framework for star-walk mission based on multimodal observation requirements information. Space-Integrated-Ground Information Networks, 2022, 3(03): 23−29 doi: 10.11959/j.issn.2096-8930.2022028
|
|
[74]
|
Chang Z, Chen Y, Yang W, Zhou Z. Mission planning problem for optical video satellite imaging with variable image duration: A greedy algorithm based on heuristic knowledge. Advances in Space Research, 2020, 66(11): 2597−2609 doi: 10.1016/j.asr.2020.09.002
|
|
[75]
|
Cui J, Zhang X. Application of a multi-satellite dynamic mission scheduling model based on mission priority in emergency response. Sensors, 2019, 19(6): 1430 doi: 10.3390/s19061430
|
|
[76]
|
Kluegl P, Toepfer M, Beck P-D, Fette G, Puppe F. UIMA Ruta: Rapid development of rule-based information extraction applications. Natural Language Engineering, 2016, 22(1): 1−40 doi: 10.1017/S1351324914000114
|
|
[77]
|
彭双, 伍江江, 陈浩, 杜春, 李军. 基于卷积注意力网络的卫星观测任务序贯决策方法. 郑州大学学报(理学版), 2023, 55(05): 47−52 doi: 10.13705/j.issn.1671-6841.2022164Peng Shuang, Wu Jiang-Jiang, Chen Hao, Du Chun, Li Jun. Satellite observation task sequential decision-making method based on convolutional attention neural network. Journal of Zhengzhou University(Natural Science Edition), 2023, 55(05): 47−52 doi: 10.13705/j.issn.1671-6841.2022164
|
|
[78]
|
尚希杰, 冯阳, 林晓勇, 张超, 赵超. 面向成像卫星组网的群任务规划方法探讨. 数字技术与应用, 2023, 41(11): 87−90 doi: 10.19695/j.cnki.cn12-1369.2023.11.27Shang Xi-Jie, Feng Yang, Lin Xiao-Yong, Zhang Chao, Zhao Chao. Exploration of group task planning method for imaging satellite networking. Digital Technology & Application, 2023, 41(11): 87−90 doi: 10.19695/j.cnki.cn12-1369.2023.11.27
|
|
[79]
|
Peng J, Kang L. Distributed satellite resource scheduling based on improved contract network protocol. Systems Engineering & Electronics, 2022, 44(10
|
|
[80]
|
Shujian C, Zhi L, Min H, Zhang Y S. Multi satellite imaging planning method with optimal response time for emergency tasks. Chinese Space Science and Technology, 2020, 40(2): 17
|
|
[81]
|
赵鹏乾. 基于强化学习的多智能体协作问题的关键技术研究[博士论文]. 北京: 北京邮电大学, 2023Zhao Peng-Qian. Research on key technologies of multi-agent cooperation problems based on reinforcement learning[Ph. D. dissertation]. Beijing: Beijing University of Posts and Telecommunications, 2023
|
|
[82]
|
Lu J, Chen Y, He R. A learning-based approach for agile satellite onboard scheduling. IEEE Access, 2020, 8: 16941−16952 doi: 10.1109/ACCESS.2020.2968051
|
|
[83]
|
Pi Y, Zhang W, Zhang Y, Huang H, Rao B, Ding Y, Yang S. Applications of multi-agent deep reinforcement learning communication in network management: A Survey. arXiv preprint arXiv: 2407.17030, 2024.
|
|
[84]
|
王俊, 夏维, 胡笑旋, 张任驰. 基于多Agent的遥感星座自主协同任务规划. 指挥与控制学报, 2021, 7(03): 287−294 doi: 10.3969/j.issn.2096-0204.2021.03.0287Wang Jun, Xia Wei, Hu Xiao-Xuan, Zhang Ren-Chi. Autonomous cooperative mission planning for remote sensing constellation based on multi-agent. Journal of Command and Control, 2021, 7(03): 287−294 doi: 10.3969/j.issn.2096-0204.2021.03.0287
|
|
[85]
|
乔熔岩, 赵新国. 基于多阶段决策的侦察卫星任务规划研究. 航天电子对抗, 2014, 30(06): 30−34 doi: 10.3969/j.issn.1673-2421.2014.06.009Qiao Rong-Yan, Zhao Xin-Guo. Research on mission planning for reconnaissance satellite based on multi-stage decision. Aerospace Electronic Warfare, 2014, 30(06): 30−34 doi: 10.3969/j.issn.1673-2421.2014.06.009
|
|
[86]
|
Feng P, Chen H, Peng S, Chen L, Li L. A method of distributed multi-satellite mission scheduling based on improved contract net protocol. In: Proceedings of 2015 11th International Conference on Natural Computation. Zhangjiajie, China: IEEE, 2015. 1062-1068
|
|
[87]
|
Gazi V. Swarm aggregations using artificial potentials and sliding-mode control. IEEE Transactions on Robotics, 2005, 21(6): 1208−1214 doi: 10.1109/TRO.2005.853487
|
|
[88]
|
Yao J, Ordonez R, Gazi V. Swarm tracking using artificial potentials and sliding mode control. 2007: 749-754
|
|
[89]
|
Kocmi T, Federmann C. Large language models are state-of-the-art evaluators of translation quality. arXiv preprint arXiv: 2302.14520, 2023
|
|
[90]
|
Jing H, Ma K. Novel Iterative-Learning-Observer-Based fault detection for dynamic actuators. Journal of Guidance, Control, and Dynamics, 2024, 47(11): 2453−2459 doi: 10.2514/1.G008384
|
|
[91]
|
Santos W G, Mason P, Stoneking E T, Sarli B V. Reconfigurable guidance strategy for compensating actuator faults in spacecraft formation flying. Journal of Guidance, Control, and Dynamics, 2025, 48(2): 282−296 doi: 10.2514/1.G008087
|
|
[92]
|
Hasan M N, Haris M, Qin S. Fault-tolerant spacecraft attitude control: A critical assessment. Progress in Aerospace Sciences, 2022, 130: 100806 doi: 10.1016/j.paerosci.2022.100806
|
|
[93]
|
柳明军. 执行器与敏感器故障的卫星姿态容错控制[硕士论文]. 辽宁: 渤海大学, 2022Liu Ming-Jun. Attitude fault tolerant control for satellite with actuator and sensor faults[Master thesis]. Liaoning: Bohai University, 2022
|
|
[94]
|
陈雪芹, 耿云海, 张迎春, 王峰. 基于LMI的鲁棒容错控制及其在卫星姿态控制中的应用. 控制理论与应用, 2008(01): 95−99Chen Xue-Qin, Geng Yun-Hai, Zhang Ying-Chun, Wang Feng. Robust fault-tolerant h-infnity control based on LMI approach and application in satellite attitude control system. Control Theory & Applications, 2008(01): 95−99
|
|
[95]
|
Jiang Y, Hu Q, Ma G. Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA Transactions, 2010, 49(1): 57−69 doi: 10.1016/j.isatra.2009.08.003
|
|
[96]
|
耿云海, 金荣玉, 陈雪芹, 李冬柏. 执行机构故障的航天器姿态容错控制. 宇航学报, 2017, 38(11): 1186−1194 doi: 10.3873/j.issn.1000-1328.2017.11.007Geng Yun-Hai, Jin Rong-Yu, Chen Xue-Qin, Li Dong-Bo. Spacecraft attitude fault tolerant control with actuator fault. Journal of Astronautics, 2017, 38(11): 1186−1194 doi: 10.3873/j.issn.1000-1328.2017.11.007
|
|
[97]
|
Chiniforoushan M, Mortazavi M, Raissi K. Data-driven solutions to spacecraft relative attitude-position fault-tolerant control. Advances in Space Research, 2023, 71(12): 5337−5359 doi: 10.1016/j.asr.2023.01.066
|
|
[98]
|
Mei Y, Liao Y, Gong K, Luo D. Fuzzy adaptive sliding mode fault estimation and fixed-time fault-tolerant control for coupled spacecraft based on SE (3). Aerospace Science and Technology, 2022, 126: 107673 doi: 10.1016/j.ast.2022.107673
|
|
[99]
|
Zhao L, Lu Z, Liao W, Liu T, Ling KV, Zheng K. Fault-tolerant control for satellite autonomous rendezvous with quality characteristics and actuator uncertainties. Aerospace Science and Technology, 2024, 150: 109182 doi: 10.1016/j.ast.2024.109182
|
|
[100]
|
Shao X, Hu Q, Shi Y, Zhang Y. Fault-tolerant control for full-state error constrained attitude tracking of uncertain spacecraft. Automatica, 2023, 151: 110907 doi: 10.1016/j.automatica.2023.110907
|
|
[101]
|
Morgan D, Chung S-J, Hadaegh F Y. Model predictive control of swarms of spacecraft using sequential convex programming. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1725−1740 doi: 10.2514/1.G000218
|
|
[102]
|
Hu Q, Xie J, Liu X. Trajectory optimization for accompanying satellite obstacle avoidance. Aerospace Science and Technology, 2018, 82: 220−233 doi: 10.1016/j.ast.2018.08.033
|
|
[103]
|
Ma G, Huang H, Zhuang Y. Time optimal trajectory planning for reconfiguration of satellite formation with collision avoidance. In: Proceedings of International Conference on Control and Automation. Xiamen, China: IEEE, 2010. 476-479
|
|
[104]
|
赵双, 张雅声, 戴桦宇. 基于快速响应的导航星座重构构型设计. 空间控制技术与应用, 2018, 44(04): 26−33 doi: 10.3969/j.issn.1674-1579.2018.04.004Zhao Shuang, Zhang Ya-Sheng, Dai Hua-Yu. Configuration design of navigation constellation reconfiguration based on quick response. Aerospace Control and Application, 2018, 44(04): 26−33 doi: 10.3969/j.issn.1674-1579.2018.04.004
|
|
[105]
|
李思远. 空间扰动条件下的卫星集群自主重构控制研究[博士论文]. 哈尔滨: 哈尔滨工业大学, 2022Li Si-Yuan. Research on autonomous reconfiguration control of satellite cluster under space disturbance conditions[Ph. D. dissertation]. Harbin: Harbin Institute of Technology, 2022
|
|
[106]
|
Wang L X, Ye D, Kong X R, Xiao Y. Decentralized receding horizon control for satellite cluster reconfigurations with successive convexification method. IEEE Transactions on Aerospace and Electronic Systems, DOI: 10.1109/TAES.2024.3398607
|
|
[107]
|
Cui Y, Chen Y, Yang D, Shu Z, Huang T, Gong X. Resilient formation tracking of spacecraft swarm against actuation attacks: A distributed Lyapunov-based model predictive approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(11): 7053−7065 doi: 10.1109/TSMC.2023.3292426
|
|
[108]
|
石子君. 基于多Agent的星群仿真系统研究[硕士论文]. 哈尔滨: 哈尔滨工业大学, 2020Shi Zi-Jun. Study on multi-satellite simulation system based on multi-agent methods[Master thesis]. Harbin: Harbin Institute of Technology, 2020
|
|
[109]
|
白雪, 左小玉, 陈天冀, 徐明. 小卫星集群系统任务规划与控制方法. 航天控制, 2022, 40(04): 61−68 doi: 10.3969/j.issn.1006-3242.2022.04.009Bai Xue, Zuo Xiao-Yu, Chen Tian-Ji, Xu Ming. Space mission planning and control method of small satellite swarm system. Aerospace Control, 2022, 40(04): 61−68 doi: 10.3969/j.issn.1006-3242.2022.04.009
|