• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星群内外态势认知与安全控制的体系架构及理论方法

李文博 刘鹏 刘萍 刘成瑞 刘文静 马亚杰 薛文超 党庆庆

李文博, 刘鹏, 刘萍, 刘成瑞, 刘文静, 马亚杰, 薛文超, 党庆庆. 星群内外态势认知与安全控制的体系架构及理论方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250326
引用本文: 李文博, 刘鹏, 刘萍, 刘成瑞, 刘文静, 马亚杰, 薛文超, 党庆庆. 星群内外态势认知与安全控制的体系架构及理论方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250326
Li Wen-Bo, Liu Peng, Liu Ping, Liu Cheng-Rui, Liu Wen-Jing, Ma Ya-Jie, Xue Wen-Chao, Dang Qing-Qing. System architecture and theoretical methods for internal and external situation awareness and security control of satellite clusters. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250326
Citation: Li Wen-Bo, Liu Peng, Liu Ping, Liu Cheng-Rui, Liu Wen-Jing, Ma Ya-Jie, Xue Wen-Chao, Dang Qing-Qing. System architecture and theoretical methods for internal and external situation awareness and security control of satellite clusters. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250326

星群内外态势认知与安全控制的体系架构及理论方法

doi: 10.16383/j.aas.c250326 cstr: 32138.14.j.aas.c250326
基金项目: 国家自然科学基金(62022013), 姑苏创新领军人才(ZXL2023177), 思源联盟基金(HTKJ2024SY502002)资助
详细信息
    作者简介:

    李文博:南京航空航天大学教授, 北京控制工程研究所研究员. 2012年在获得哈尔滨工业大学博士学位. 主要研究方向为航天器态势感知与安全控制. E-mail: liwenbo_bice@163.com

    刘鹏:西北工业大学民航学院硕士研究生. 主要研究方向为飞行器导航、制导与控制. E-mail: liu_peng@mail.nwpu.edu.cn

    刘萍:电子科技大学(深圳)高等研究院副研究员. 2015年在华南理工大学获得博士学位. 主要研究方向为航天器控制系统设计和故障诊断. E-mail: liup89@mail.sysu.edu.cn

    刘成瑞:南京航空航天大学教授, 北京控制工程研究所研究员. 2006年在北京航空航天大学获博士学位. 主要研究方向为航天器的故障诊断与容错控制. E-mail: liuchengrui@gmail.com

    刘文静:北京控制工程研究所研究员. 2009年获得天津大学博士学位. 主要研究方向为故障诊断与容错控制, 卫星控制系统的可诊断性评价与设计. E-mail: lwjingbice@163.com

    马亚杰:南京航空航天大学自动化学院教授. 主要研究方向为自适应故障诊断与容错控制及应用. E-mail: yajiema@nuaa.edu.cn

    薛文超:中国科学院数学与系统科学研究院研究员, 系统所控制室主任. 2007年获得南开大学学士学位, 2012年获得中国科学院大学博士学位. 主要研究方向为非线性不确定系统控制与滤波, 智能集群协同感知与控制. E-mail: wenchaoxue@amss.ac.cn

    党庆庆:西北工业大学民航学院助理教授. 2019年获得北京航空航天大学博士学位. 主要研究方向为飞行器动力学与安全控制, 空间态势感知与评估, 任务规划. 本文通信作者. E-mail: dangqingqing@nwpu.edu.cn

System Architecture and Theoretical Methods for Internal and External Situation Awareness and Security Control of Satellite Clusters

Funds: Supported by National Natural Science Foundation for China (62022013), Suzhou Municipal Science and Technology Bureau (ZXL2023177), and Siyuan Alliance Fund (HTKJ2024SY502002)
More Information
    Author Bio:

    LI Wen-Bo Professor at the Nanjing University of Aeronautics and Astronautics, researcher at Beijing Institute of Control Engineering. He received his Ph.D. degree from Harbin Institute of Technology in 2012. His research interest covers spacecraft situation awareness and security control

    LIU Peng Master student at the College of Civil Aviation, Northwestern Polytechnical University. His research interest covers aircraft navigation, guidance and control

    LIU Ping Associate researcher at Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China. She received her Ph.D. degree from South China University Of Technology in 2015. Her research interest covers spacecraft control system design and fault diagnosis

    LIU Cheng-Rui Professor at the Nanjing University of Aeronautics and Astronautics, researcher at Beijing Institute of Control Engineering. He received his Ph. D. degree from Beihang University in 2006. His research interest covers fault diagnosis and tolerant control for spacecrafts

    LIU Wen-Jing Researcher at Beijing Institute of Control Engineering. She received her Ph. D. degree from Tianjin University in 2009. Her research interest covers fault diagnosis and tolerant control, fault diagnosability evaluation and design for satellite control systems

    MA Ya-Jie Professor at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interest covers adaptive fault diagnosis and fault-tolerant control and their applications

    XUE Wen-Chao Associate researcher at the Key Laboratory of Systems and Control, Academy of Mathematics and Systems Sciences, director of the Control Department. He received his bachelor degree from Nankai University in 2007 and received his Ph.D. degree from University of Chinese Academy of Sciences in 2012. His research interest covers nonlinear uncertain systems control and filter, intelligent swarm cooperative perception and control

    DANG Qing-Qing Assistant professor at the College of Civil Aviation, Northwestern Polytechnical University. He received his Ph.D. degree from Beihang University in 2019. His research interest covers aircraft dynamics and safety control, space situation awareness and assessment, and mission planning. Corresponding author of this paper

  • 摘要: 围绕下一代空间基础设施体系建设的重大战略需求, 针对复杂任务下卫星集群的态势认知与安全控制技术展开探讨. 首先, 分析国内外卫星集群的发展现状与面临挑战, 指出当前研究在理论体系完备性、感知信息全面性、评估可信度、决策合理性及执行精准性等方面存在不足. 其次, 重点阐述星群OODA架构体系, 分别探讨感知、评估、决策与执行各环节的关键技术与研究进展. 最后, 对星群态势认知与安全控制技术的未来发展进行展望, 提出需构建能力量化表征模型, 发展多源信息交互与融合的态势全面感知、内外因素耦合影响下的可信评估以及动态场景下的快速合理决策和多目标跨尺度任务的精准执行, 以提升星群自主安全运行能力.
  • 图  1  国内外代表性星座任务

    Fig.  1  Representative constellation tasks at home and abroad

    图  2  星群OODA环架构解析

    Fig.  2  Analysis of satellite clusters OODA loop architecture

    图  3  星群态势感知与安全控制发展趋势

    Fig.  3  Development trend of satellite clusters situation awareness and security control

  • [1] 陈占胜. 大规模分布式异构星群关键科学问题与智能化架构. 上海航天(中英文), 2024, 41(S1): 1−12

    Chen Zhan-Sheng. Key science problems and intelligent architecture of large scale distributed heterogeneous satellite clusters. Aerospace Shanghai (Chinese & English), 2024, 41(S1): 1−12
    [2] 禹华钢, 方子希. 低轨卫星互联网: 发展、应用及新技术展望. 无线电工程, 2023, 53(11): 2699−2707 doi: 10.3969/j.issn.1003-3106.2023.11.027

    YU Hua-Gang, FANG Zi-Xi. LEO satellite internet: development, application and new technology prospects. Radio Engineering, 2023, 53(11): 2699−2707 doi: 10.3969/j.issn.1003-3106.2023.11.027
    [3] 唐亮, 刘鸿鹏, 何慧东. 全球小卫星现状及发展. 国际太空, 2019(06): 36−41

    Tang Liang, Liu Hong-Peng, He Hui-Dong. Status and development of global small satellites. Space International, 2019(06): 36−41
    [4] 秦子浩, 方进勇. 巨型小卫星星座对空间碎片环境的影响研究. 空间电子技术, 2021, 18(01): 87−92 doi: 10.3969/j.issn.1674-7135.2021.01.016

    Qin Zi-Hao, Fang Jin-Yong. Study on the effects from large constellations on space debris environment. Space Electronic Technology, 2021, 18(01): 87−92 doi: 10.3969/j.issn.1674-7135.2021.01.016
    [5] 康利鸿, 田菁, 江碧涛. 巨星座时代遥感卫星应用技术挑战与思考. 遥感学报, 2024, 28(07): 1658−1666

    Kang Li-Hong, Tian Jing, Jiang Bi-Tao. Challenges and research on remote sensing satellite application technology in the Giant Constellation Era. National Remote Sensing Bulletin, 2024, 28(07): 1658−1666
    [6] 沈大海, 蒙艳松, 边朗, 雷文英, 王瑛, 严涛, 等. 基于低轨通信星座的全球导航增强系统. 太赫兹科学与电子信息学报, 2019, 17(02): 209−215

    Shen Da-Hai, Meng Yan-Song, Bian Lang, Lei Wen-Ying, Wang Ying, Yan Tao, et al. A global navigation augmentation system based on LEO communication constellation. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(02): 209−215
    [7] 高梓贺, 姚海鹏, 张磊, 石钰林, 王富, 陶滢. 低轨巨型星座体系架构设计与关键技术分析. 天地一体化信息网络, 2024, 5(02): 43−52 doi: 10.11959/j.issn.2096-8930.2024015

    Gao Zi-He, Yao Hai-Peng, Zhang Lei, Shi Yu-Lin, Wang Fu, Tao Ying. Architecture design and key technologies analysis of LEO satellite mega-constellations. Space-Integrated-Ground Information Networks, 2024, 5(02): 43−52 doi: 10.11959/j.issn.2096-8930.2024015
    [8] 孙耀华, 冯昕澳, 彭木根. 低轨巨型星座组网: 挑战与关键技术. 天地一体化信息网络, 2024, 5(04): 57−74 doi: 10.11959/j.issn.2096-8930.2024039

    Sun Yao-Hua, Feng Xin-Ao, Peng Mu-Gen. Mega LEO satellite constellations networking: challenges and key technologies. Space-Integrated-Ground Information Networks, 2024, 5(04): 57−74 doi: 10.11959/j.issn.2096-8930.2024039
    [9] Marshall M, Pellegrino S. Reduced-order modeling for flexible spacecraft deployment and dynamics. In: Proceedings of AIAA Scitech 2021 Forum. Nashville, TN, USA: AIAA, 2021. 1385
    [10] Hearn H C. Development and validation of fluid/thermodynamic models for spacecraft propulsion systems. Journal of Propulsion and Power, 2001, 17(3): 527−533 doi: 10.2514/2.5807
    [11] Dai Z H, Wang L, Yang S S, Zhao J W. Multi-signal model in application of spacecraft power system testability. In: Proceedings of AIAA Modeling and Simulation Technologies Conference. Grapevine, Texas, USA: AIAA, 2016. 4138
    [12] Xu X, Chen N. A state-space-based prognostics model for lithiumion battery degradation. Reliability Engineering & System Safety, 2017, 159: 47−57 doi: 10.1016/j.ress.2016.10.026
    [13] Goebel K, Saha B, Saxena A, Jose R C, Jon P C. Prognostics in battery health management. IEEE instrumentation & measurement magazine, 2008, 11(4): 33−40 doi: 10.1109/MIM.2008.4579269
    [14] Kamruzzaman M, Zhang X, Abdelmalak M, Shi D, Benidris M. A data-driven accurate battery model to use in probabilistic analyses of power systems. Journal of Energy Storage, 2021, 44: 103292 doi: 10.1016/j.est.2021.103292
    [15] 叶正宇, 程月华, 韩笑冬, 姜斌. 深空探测航天器姿态控制系统故障定位. 控制理论与应用, 2019, 36(12): 2093−2099

    Ye Zheng-Yu, Cheng Yue-Hua, Han Xiao-Dong, Jiang Bin. Fault location for attitude control systems of deep space exploration satellites. Control Theory & Applications, 2019, 36(12): 2093−2099
    [16] Koscielny J M, Syfert M, Rostek K, Sztyber A. Fault isolability with different forms of the faults-symptoms relation. International Journal of Applied Mathematics and Computer Science, 2016, 26(4): 815 doi: 10.1515/amcs-2016-0058
    [17] Ji H, He X, Shang J, Zhou D. Incipient sensor fault diagnosis using moving window reconstruction-based contribution. Industrial & Engineering Chemistry Research, 2016, 55(10): 2746−2759 doi: 10.1021/acs.iecr.5b03944
    [18] Liu J, Hua Y, Li Q, Ren Z. Fault diagnosability qualitative analysis of spacecraft based on temporal fault signature matrix. In: Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference. Nanjing, China: IEEE, 2016. 1496-1500
    [19] Gehin A-L, Hu H, Bayart M. A self-updating model for analysing system reconfigurability. Engineering Applications of Artificial Intelligence, 2012, 25(1): 20−30 doi: 10.1016/j.engappai.2011.08.001
    [20] 屠园园, 王大轶, 张香燕, 李嘉兴, 黄晓峰. 航天器的可重构性与自主重构方法. 航空学报, 2023, 44(23): 135−148 doi: 10.7527/S1000-6893.2023.28855

    Tu Yuan-Yuan, Wang Da-Yi, Zhang Xiang-Yan, Li Jia-Xing, Huang Xiao-Feng. Reconfigurability and autonomous reconfiguration methods of spacecraft. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 135−148 doi: 10.7527/S1000-6893.2023.28855
    [21] Wang D, Liu C. Reconfigurability analysis method for spacecraft autonomous control. Mathematical Problems in Engineering, 2014, 2014(1): 724235 doi: 10.1155/2014/724235
    [22] Loureiro R, Merzouki R, Bouamama B O. Bond graph model based on structural diagnosability and recoverability analysis: Application to intelligent autonomous vehicles. IEEE Transactions on Vehicular Technology, 2012, 61(3): 986−997 doi: 10.1109/TVT.2012.2186472
    [23] Abdesselam I, Haffaf H. Hypergraph reconfigurability analysis. Ieri Procedia, 2014, 6: 22−32 doi: 10.1016/j.ieri.2014.03.005
    [24] 刘文静, 刘成瑞, 王南华, 王大轶. 定量与定性相结合的动量轮故障可诊断性评价. 中国空间科学技术, 2011, 31(04): 54−63 doi: 10.3780/j.issn.1000-758X.2011.04.008

    Liu Wen-Jing, Liu Chen-Rui, Wang Nan-Hua, Wang Da-Yi. Quantitative and qualitative model based fault diagnosability evaluation of momentum wheel. Chinese Space Science and Technology, 2011, 31(04): 54−63 doi: 10.3780/j.issn.1000-758X.2011.04.008
    [25] Eriksson D, Frisk E, Krysander M. A method for quantitative fault diagnosability analysis of stochastic linear descriptor models. Automatica, 2013, 49(6): 1591−1600 doi: 10.1016/j.automatica.2013.02.045
    [26] Zhong M, Song Y, Xue T, Yang R, Li W. Parity space-based fault detection by minimum error minimax probability machine. IFAC-PapersOnLine, 2018, 51(24): 1292−1297 doi: 10.1016/j.ifacol.2018.09.568
    [27] Wang D, Fu F, Li W, Tu Y, Liu C, Liu W. A review of the diagnosability of control systems with applications to spacecraft. Annual Reviews in control, 2020, 49: 212−229 doi: 10.1016/j.arcontrol.2020.03.004
    [28] 符方舟, 李嘉兴, 张香燕, 杨盛庆, 王文妍, 郑翰清. 面向推力器故障检测的卫星编队星间链路设计. 上海航天(中英文), 2022, 39(06): 66−74 doi: 10.19328/j.cnki.2096‑8655.2022.06.008

    Fu Fang-Zhou, Li Jia-Xing, Zhang Xiang-Yan, Yang Sheng-Qing, Wang Wen-Yan, Zheng Han-Qing. An inter-satellite link design method of satellite formations under thruster fault detection. Aerospace Shanghai (Chinese & English), 2022, 39(06): 66−74 doi: 10.19328/j.cnki.2096‑8655.2022.06.008
    [29] Richter J H, Heemels W, Van De Wouw N, Lunze J. Reconfigurable control of piecewise affine systems with actuator and sensor faults: stability and tracking. Automatica, 2011, 47(4): 678−691 doi: 10.1016/j.automatica.2011.01.048
    [30] Tu Y, Wang D, Fu F, Li W. Reconfigurability evaluation for disturbance rejection control systems under actuator outages. Journal of the Franklin Institute, 2021, 358(8): 4239−4256 doi: 10.1016/j.jfranklin.2020.06.030
    [31] Staroswiecki M. On reconfigurability with respect to actuator failures. IFAC Proceedings Volumes, 2002, 35(1): 257−262 doi: 10.3182/20020721-6-es-1901.00774
    [32] Wu N E, Zhou K, Salomon G. Control reconfigurability of linear time-invariant systems. Automatica, 2000, 36(11): 1767−1771 doi: 10.1016/S0005-1098(00)00080-7
    [33] Jiang B, Zhang K, Shi P. Integrated fault estimation and accommodation design for discrete-time Takagi–Sugeno fuzzy systems with actuator faults. IEEE Transactions on Fuzzy Systems, 2010, 19(2): 291−304 doi: 10.1109/tfuzz.2010.2095861
    [34] Lan J, Patton R J. A decoupling approach to integrated fault-tolerant control for linear systems with unmatched non-differentiable faults. Automatica, 2018, 89: 290−299 doi: 10.1016/j.automatica.2017.12.011
    [35] Liu Y, Yang G-H. Integrated design of fault estimation and fault-tolerant control for linear multi-agent systems using relative outputs. Neurocomputing, 2019, 329: 468−475 doi: 10.1016/j.neucom.2018.11.005
    [36] Morbidi F, Mariottini G L, Prattichizzo D. Observer design via immersion and invariance for vision-based leader–follower formation control. Automatica, 2010, 46(1): 148−154 doi: 10.1016/j.automatica.2009.10.016
    [37] Wang X, Tan C P, Wu F, Wang J. Fault-tolerant attitude control for rigid spacecraft without angular velocity measurements. IEEE Transactions on Cybernetics, 2019, 51(3): 1216−1229
    [38] Ghasemi S, Khorasani K. Fault detection and isolation of the attitude control subsystem of spacecraft formation flying using extended Kalman filters. International Journal of Control, 2015, 88(10): 2154−2179 doi: 10.1080/00207179.2015.1039591
    [39] Benninghoff H, Boge T. Rendezvous involving a non-cooperative, tumbling target: Estimation of moments of inertia and center of mass of an unknown target. In: Proceedings of 25th International Symposium on Space Flight Dynamics. Munich, Germany: 2015. 25
    [40] 符方舟, 王大轶, 李文博. 基于卡尔曼滤波器组的多重故障诊断方法研究. 控制理论与应用, 2017, 34(05): 586−593 doi: 10.7641/CTA.2017.60675

    Fu Fang-Zhou, Wang Da-Yi, Li Wen-Bo. Multiple fault detection and isolation based on Kalman filters. Control Theory & Applications, 2017, 34(05): 586−593 doi: 10.7641/CTA.2017.60675
    [41] 阮仁桂, 贾小林, 朱俊, 呼延宗泊, 冯来平, 李杰. 联合星地与星间Ka伪距的北斗三号卫星一体化定轨和时间同步. 测绘学报, 2020, 49(03): 292−299

    Ruan Reng-Gui, Jia Xiao-Lin, Zhu Jun, Huyan Zong-Bo, Feng Lai-Ping, Li Jie. Integrated orbit determination and time synchronization for BDS-3 satellites with satellite-ground and inter-satellite one-way Ka-pseudoranges. Acta Geodaetica et Cartographica Sinica, 2020, 49(03): 292−299
    [42] Tang C P, Hu X G, Zhou S S, Liu L, Pan J Y, Chen L C, et al. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements. Journal of Geodesy, 2018, 92(10): 1155−1169 doi: 10.1007/s00190-018-1113-7
    [43] 孔祥磊, 孙弋舒, 吴学友, 高建威, 田志新. 大规模高动态星座网络信息同步方法. 中国空间科学技术(中英文), 2025, 45(1): 135−142 doi: 10.16708/j.cnki.1000-758X.2025.0013

    Kong Xiang-Lei, Sun Yi-Shu, Wu Xue-You, Gao Jian-Wei, Tian Zhi-Xin. Information synchronization method for large scale and high dynamic constellation network. Chinese Space Science and Technology, 2025, 45(1): 135−142 doi: 10.16708/j.cnki.1000-758X.2025.0013
    [44] 郭雷, 李文硕, 崔洋洋, 朱玉凯, 章健淳, 余翔, 等. 动态闭环不确定性量化理论与智能无人系统应用. 中国科学: 技术科学, 2025, 55(01): 1−13 doi: 10.1360/SST-2024-0155

    Guo Lei, Li Wen-Shuo, Cui Yang-Yang, Zhu Yu-Kai, Zhang Jian-Chun, Yu Xiang, et al. Dynamic closed-loop uncertainty quantification theory with intelligent unmanned system applications. Sci Sin Tech, 2025, 55(01): 1−13 doi: 10.1360/SST-2024-0155
    [45] 王兆龙, 朱文山, 牟金震, 韩飞, 敬忠良. 多航天器协同观测的空间目标状态估计研究进展. 中国科学: 物理学力学天文学, 2025, 55(02): 23−43

    Wang Zhao-Long, Zhu Wen-Shan, Mu Jin-Zhen, Han Fei, Jing Zhong-Liang. An overview of the state estimation for space non-cooperative target with multi-spacecraft cooperative observation. Sci Sin-Phys Mech Astron, 2025, 55(02): 23−43
    [46] 高曌, 高杨, 高梓贺, 陶滢. 应用动态感知的卫星分布式集群管理平台设计与实现. 航天器工程, 2024, 33(2): 125−132

    Gao Zhao, Gao Yang, Gao Zi-He, Tao Ying. Design and implementation of satellite distributed cluster management platform using dynamic perception. Spacecraft Engineering, 2024, 33(2): 125−132
    [47] 隋维舜, 段广仁, 张卯瑞. 多航天器系统分布式固定时间输出反馈姿态协同跟踪控制. 控制与决策, 2021, 36(5): 1049−1058 doi: 10.13195/j.kzyjc.2019.0968

    Sui Wei-Shun, Duan Guang-Ren, Zhang Mao-Rui. Distributed fixed-time output feedback attitude coordination tracking control for multiple rigid spacecraft. Control and Decision, 2021, 36(5): 1049−1058 doi: 10.13195/j.kzyjc.2019.0968
    [48] Auer S, Reinartz P, Schmitt M. Object-related alignment of heterogeneous image data in remote sensing. In: Proceedings of 21st International Conference on Information Fusion. Cambridge, UK: IEEE, 2018. 1608-1615
    [49] Liu Z J, Qiu Q, Li J, Wang L Z, Plaza A. Geographic optimal transport for heterogeneous data: Fusing remote sensing and social media. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6936−6945 doi: 10.1109/tgrs.2020.3031337
    [50] 项新建, 李可晗, 曹楹, 黄炳强, 郑永平. 基于支持度和确定度的异构数据融合方法. 传感技术学报, 2023, 36(8): 1243−1249 doi: 10.3969/j.issn.1004-1699.2023.08.010

    Xiang Xin-Jian, Li Ke-Han, Cao Ying, Huang Bing-Qiang, Zheng Yong-Ping. Heterogeneous data fusion method based on support and certainty. Chinese Journal of Sensors and Actuators, 2023, 36(8): 1243−1249 doi: 10.3969/j.issn.1004-1699.2023.08.010
    [51] 朱文山, 牟金震, 李爽, 韩飞. 基于深度学习的航天器位姿估计研究进展. 宇航学报, 2023, 44(11): 1633−1644

    Zhu Wen-Shan, Mu Jin-Zhen, Li Shuang, Han Fei. Review and prospect of spacecraft pose estimation based on deep learning. Journal of Astronautics, 2023, 44(11): 1633−1644
    [52] Schnitzer F, Janschek K, Willich G. Experimental results for image-based geometrical reconstruction for spacecraft rendezvous navigation with unknown and uncooperative target spacecraft. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Algarve, Portugal: IEEE, 2012. 5040-5045
    [53] Pourtakdoust S H, Fakhari Mehrjardi M, Hajkarim M H, Gourabi F N. Advanced fault detection and diagnosis in spacecraft attitude control systems: Current state and challenges. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023, 237(12): 2679−2699 doi: 10.1177/09544100231157132
    [54] Khorasgani H G, Menhaj M B, Talebi H, Nejad F B. Neural-network-based sensor fault detection & isolation for nonlinear hybrid systems. IFAC Proceedings Volumes, 2012, 45(20): 1029−1034 doi: 10.3182/20120829-3-MX-2028.00203
    [55] Li Z, Ma L, Khorasani K. Fault diagnosis of an actuator in the attitude control subsystem of a satellite using neural networks. In: Proceedings of 2007 International Joint Conference on Neural Networks. Orlando, FL, USA: IEEE, 2007. 2658-2663
    [56] Augenstein S, Rock S M. Improved frame-to-frame pose tracking during vision-only SLAM/SFM with a tumbling target. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 3131-3138
    [57] Yingxiao L, Ju H, Ping M, Jiang R Y. Target localization method of non-cooperative spacecraft on on-orbit service. Chinese Journal of Aeronautics, 2022, 35(11): 336−348 doi: 10.1016/j.cja.2022.04.001
    [58] Yang D, Zhu L, Liu Z, Wang J. A condition quantitative assessment method of spacecraft electrical power subsystem with fuzzy theory. In: Proceedings of 2021 International Conference on Advanced Electrical Equipment and Reliable Operation. Xi'an, China: IEEE, 2021. 1-6
    [59] 杨爱武, 李战武, 徐安, 吕跃, 奚之飞. 基于RS-CRITIC的空战目标威胁评估. 北京航空航天大学学报, 2020, 46(12): 2357−2365

    Yang Ai-Wu, Li Zhan-Wu, Xu An, Lü Yue, Xi Zhi-Fei. Threat assessment of air combat target based on RS-CRITIC. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2357−2365
    [60] Sun H, Xie X, Sun T, et al. Dynamic Bayesian network threat assessment for warship formation: a data analysis method. International Journal of High Performance Systems Architecture, 2018, 8(1-2): 71−81 doi: 10.1504/ijhpsa.2018.10015197
    [61] Nasrolahi S S, Abdollahi F. Sensor fault detection and recovery in satellite attitude control. Acta Astronautica, 2018, 145: 275−283 doi: 10.1016/j.actaastro.2018.01.002
    [62] 周弘波, 张金成. 基于组合权重的灰色目标威胁评估. 火力与指挥控制, 2018, 43(10): 143−146 doi: 10.3969/j.issn.1002-0640.2018.10.028

    Zhou Hong-Bo, Zhang Jin-Cheng. Evaluation of target threat based on combinational weight and grey correlation. Fire Control & Command Control, 2018, 43(10): 143−146 doi: 10.3969/j.issn.1002-0640.2018.10.028
    [63] 汪伟, 顾竹鑫, 李海波. 基于层次分析法的低空慢速小目标威胁评估方法. 信息化研究, 2019, 45(4): 20−24

    Wang Wei, Gu Zhu-Xin, Li Hai-Bo. Threat evaluation for small target at low latitude and low speed based on analytic hierarchy process. Information Research, 2019, 45(4): 20−24
    [64] Gao Y, Li D-S, Zhong H. A novel target threat assessment method based on three-way decisions under intuitionistic fuzzy multi-attribute decision making environment. Engineering Applications of Artificial Intelligence, 2020, 87: 103276 doi: 10.1016/j.engappai.2019.103276
    [65] Xiong Y, Jiang Z, Fang H Z, Fan H Z. Research on health condition assessment method for spacecraft power control system based on SVM and cloud model. In: Proceedings of 2019 Prognostics and System Health Management Conference. Paris, France: IEEE, 2019. 143-149
    [66] 于牧野, 初未萌, 符方舟, 吴志刚, 陈巍. 基于SCSO-BP神经网络的卫星姿态控制系统故障预测. 飞控与探测, 2024, 7(1): 37−46 doi: 10.20249/j.cnki.2096-5974.2024.01.006

    Yu Mu-Ye, Chu Wei-Meng, Fu Fang-Zhou, Wu Zhi-Gang, Chen Wei. Satellite attitude control system fault prediction based on SCSO-BP neural network. Flight Control & Detection, 2024, 7(1): 37−46 doi: 10.20249/j.cnki.2096-5974.2024.01.006
    [67] Liao L, Kottig F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Transactions on Reliability, 2014, 63(1): 191−207 doi: 10.1109/TR.2014.2299152
    [68] Zhang Q. Adaptive Kalman filter for actuator fault diagnosis. Automatica, 2018, 93: 333−342 doi: 10.1016/j.automatica.2018.03.075
    [69] 徐西蒙, 杨任农, 符颖, 赵雨. 基于ELM_AdaBoost强预测器的空战目标威胁评估. 系统工程与电子技术, 2018, 40(8): 1760−1768 doi: 10.3969/j.issn.1001-506X.2018.08.14

    Xu Xi-Meng, Yang Ren-Nong, Fu Ying, Zhao Yu. Target threat assessment in air combat based on ELM_AdaBoost strong predictor. Systems Engineering and Electronics, 2018, 40(8): 1760−1768 doi: 10.3969/j.issn.1001-506X.2018.08.14
    [70] Yue L, Yang R, Zuo J, Luo H, Li Q. Air Target threat assessment based on improved moth flame optimization-gray neural network model. Mathematical Problems in Engineering, 2019(1): 4203538 doi: 10.1155/2019/4203538
    [71] 王芳, 吴志泉, 史红权. SVM在空中目标威胁值评估中的应用. 火力与指挥控制, 2017, 42(9): 30−33

    Wang Fang, Wu Zhi-Quan, Shi Hong-Quan. Research on anti-air threat assessment based on SVM. Fire Control & Command Control, 2017, 42(9): 30−33
    [72] Chong W, Jun L, Ning J, Jun W, Hao C. A distributed cooperative dynamic task planning algorithm for multiple satellites based on multi-agent hybrid learning. Chinese Journal of Aeronautics, 2011, 24(4): 493−505 doi: 10.1016/S1000-9361(11)60057-5
    [73] 朱光熙, 王港, 张超, 柴英特, 付伟, 郭争强. 基于多模态观测需求信息的遥感星群任务智能规划机制. 天地一体化信息网络, 2022, 3(03): 23−29 doi: 10.11959/j.issn.2096-8930.2022028

    Zhu Guang-Xi, Wang Gang, Zhang Chao, Cai Ying-Te, Fu Wei, Guo Zheng-Qiang. Intelligent planning framework for star-walk mission based on multimodal observation requirements information. Space-Integrated-Ground Information Networks, 2022, 3(03): 23−29 doi: 10.11959/j.issn.2096-8930.2022028
    [74] Chang Z, Chen Y, Yang W, Zhou Z. Mission planning problem for optical video satellite imaging with variable image duration: A greedy algorithm based on heuristic knowledge. Advances in Space Research, 2020, 66(11): 2597−2609 doi: 10.1016/j.asr.2020.09.002
    [75] Cui J, Zhang X. Application of a multi-satellite dynamic mission scheduling model based on mission priority in emergency response. Sensors, 2019, 19(6): 1430 doi: 10.3390/s19061430
    [76] Kluegl P, Toepfer M, Beck P-D, Fette G, Puppe F. UIMA Ruta: Rapid development of rule-based information extraction applications. Natural Language Engineering, 2016, 22(1): 1−40 doi: 10.1017/S1351324914000114
    [77] 彭双, 伍江江, 陈浩, 杜春, 李军. 基于卷积注意力网络的卫星观测任务序贯决策方法. 郑州大学学报(理学版), 2023, 55(05): 47−52 doi: 10.13705/j.issn.1671-6841.2022164

    Peng Shuang, Wu Jiang-Jiang, Chen Hao, Du Chun, Li Jun. Satellite observation task sequential decision-making method based on convolutional attention neural network. Journal of Zhengzhou University(Natural Science Edition), 2023, 55(05): 47−52 doi: 10.13705/j.issn.1671-6841.2022164
    [78] 尚希杰, 冯阳, 林晓勇, 张超, 赵超. 面向成像卫星组网的群任务规划方法探讨. 数字技术与应用, 2023, 41(11): 87−90 doi: 10.19695/j.cnki.cn12-1369.2023.11.27

    Shang Xi-Jie, Feng Yang, Lin Xiao-Yong, Zhang Chao, Zhao Chao. Exploration of group task planning method for imaging satellite networking. Digital Technology & Application, 2023, 41(11): 87−90 doi: 10.19695/j.cnki.cn12-1369.2023.11.27
    [79] Peng J, Kang L. Distributed satellite resource scheduling based on improved contract network protocol. Systems Engineering & Electronics, 2022, 44(10
    [80] Shujian C, Zhi L, Min H, Zhang Y S. Multi satellite imaging planning method with optimal response time for emergency tasks. Chinese Space Science and Technology, 2020, 40(2): 17
    [81] 赵鹏乾. 基于强化学习的多智能体协作问题的关键技术研究[博士论文]. 北京: 北京邮电大学, 2023

    Zhao Peng-Qian. Research on key technologies of multi-agent cooperation problems based on reinforcement learning[Ph. D. dissertation]. Beijing: Beijing University of Posts and Telecommunications, 2023
    [82] Lu J, Chen Y, He R. A learning-based approach for agile satellite onboard scheduling. IEEE Access, 2020, 8: 16941−16952 doi: 10.1109/ACCESS.2020.2968051
    [83] Pi Y, Zhang W, Zhang Y, Huang H, Rao B, Ding Y, Yang S. Applications of multi-agent deep reinforcement learning communication in network management: A Survey. arXiv preprint arXiv: 2407.17030, 2024.
    [84] 王俊, 夏维, 胡笑旋, 张任驰. 基于多Agent的遥感星座自主协同任务规划. 指挥与控制学报, 2021, 7(03): 287−294 doi: 10.3969/j.issn.2096-0204.2021.03.0287

    Wang Jun, Xia Wei, Hu Xiao-Xuan, Zhang Ren-Chi. Autonomous cooperative mission planning for remote sensing constellation based on multi-agent. Journal of Command and Control, 2021, 7(03): 287−294 doi: 10.3969/j.issn.2096-0204.2021.03.0287
    [85] 乔熔岩, 赵新国. 基于多阶段决策的侦察卫星任务规划研究. 航天电子对抗, 2014, 30(06): 30−34 doi: 10.3969/j.issn.1673-2421.2014.06.009

    Qiao Rong-Yan, Zhao Xin-Guo. Research on mission planning for reconnaissance satellite based on multi-stage decision. Aerospace Electronic Warfare, 2014, 30(06): 30−34 doi: 10.3969/j.issn.1673-2421.2014.06.009
    [86] Feng P, Chen H, Peng S, Chen L, Li L. A method of distributed multi-satellite mission scheduling based on improved contract net protocol. In: Proceedings of 2015 11th International Conference on Natural Computation. Zhangjiajie, China: IEEE, 2015. 1062-1068
    [87] Gazi V. Swarm aggregations using artificial potentials and sliding-mode control. IEEE Transactions on Robotics, 2005, 21(6): 1208−1214 doi: 10.1109/TRO.2005.853487
    [88] Yao J, Ordonez R, Gazi V. Swarm tracking using artificial potentials and sliding mode control. 2007: 749-754
    [89] Kocmi T, Federmann C. Large language models are state-of-the-art evaluators of translation quality. arXiv preprint arXiv: 2302.14520, 2023
    [90] Jing H, Ma K. Novel Iterative-Learning-Observer-Based fault detection for dynamic actuators. Journal of Guidance, Control, and Dynamics, 2024, 47(11): 2453−2459 doi: 10.2514/1.G008384
    [91] Santos W G, Mason P, Stoneking E T, Sarli B V. Reconfigurable guidance strategy for compensating actuator faults in spacecraft formation flying. Journal of Guidance, Control, and Dynamics, 2025, 48(2): 282−296 doi: 10.2514/1.G008087
    [92] Hasan M N, Haris M, Qin S. Fault-tolerant spacecraft attitude control: A critical assessment. Progress in Aerospace Sciences, 2022, 130: 100806 doi: 10.1016/j.paerosci.2022.100806
    [93] 柳明军. 执行器与敏感器故障的卫星姿态容错控制[硕士论文]. 辽宁: 渤海大学, 2022

    Liu Ming-Jun. Attitude fault tolerant control for satellite with actuator and sensor faults[Master thesis]. Liaoning: Bohai University, 2022
    [94] 陈雪芹, 耿云海, 张迎春, 王峰. 基于LMI的鲁棒容错控制及其在卫星姿态控制中的应用. 控制理论与应用, 2008(01): 95−99

    Chen Xue-Qin, Geng Yun-Hai, Zhang Ying-Chun, Wang Feng. Robust fault-tolerant h-infnity control based on LMI approach and application in satellite attitude control system. Control Theory & Applications, 2008(01): 95−99
    [95] Jiang Y, Hu Q, Ma G. Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA Transactions, 2010, 49(1): 57−69 doi: 10.1016/j.isatra.2009.08.003
    [96] 耿云海, 金荣玉, 陈雪芹, 李冬柏. 执行机构故障的航天器姿态容错控制. 宇航学报, 2017, 38(11): 1186−1194 doi: 10.3873/j.issn.1000-1328.2017.11.007

    Geng Yun-Hai, Jin Rong-Yu, Chen Xue-Qin, Li Dong-Bo. Spacecraft attitude fault tolerant control with actuator fault. Journal of Astronautics, 2017, 38(11): 1186−1194 doi: 10.3873/j.issn.1000-1328.2017.11.007
    [97] Chiniforoushan M, Mortazavi M, Raissi K. Data-driven solutions to spacecraft relative attitude-position fault-tolerant control. Advances in Space Research, 2023, 71(12): 5337−5359 doi: 10.1016/j.asr.2023.01.066
    [98] Mei Y, Liao Y, Gong K, Luo D. Fuzzy adaptive sliding mode fault estimation and fixed-time fault-tolerant control for coupled spacecraft based on SE (3). Aerospace Science and Technology, 2022, 126: 107673 doi: 10.1016/j.ast.2022.107673
    [99] Zhao L, Lu Z, Liao W, Liu T, Ling KV, Zheng K. Fault-tolerant control for satellite autonomous rendezvous with quality characteristics and actuator uncertainties. Aerospace Science and Technology, 2024, 150: 109182 doi: 10.1016/j.ast.2024.109182
    [100] Shao X, Hu Q, Shi Y, Zhang Y. Fault-tolerant control for full-state error constrained attitude tracking of uncertain spacecraft. Automatica, 2023, 151: 110907 doi: 10.1016/j.automatica.2023.110907
    [101] Morgan D, Chung S-J, Hadaegh F Y. Model predictive control of swarms of spacecraft using sequential convex programming. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1725−1740 doi: 10.2514/1.G000218
    [102] Hu Q, Xie J, Liu X. Trajectory optimization for accompanying satellite obstacle avoidance. Aerospace Science and Technology, 2018, 82: 220−233 doi: 10.1016/j.ast.2018.08.033
    [103] Ma G, Huang H, Zhuang Y. Time optimal trajectory planning for reconfiguration of satellite formation with collision avoidance. In: Proceedings of International Conference on Control and Automation. Xiamen, China: IEEE, 2010. 476-479
    [104] 赵双, 张雅声, 戴桦宇. 基于快速响应的导航星座重构构型设计. 空间控制技术与应用, 2018, 44(04): 26−33 doi: 10.3969/j.issn.1674-1579.2018.04.004

    Zhao Shuang, Zhang Ya-Sheng, Dai Hua-Yu. Configuration design of navigation constellation reconfiguration based on quick response. Aerospace Control and Application, 2018, 44(04): 26−33 doi: 10.3969/j.issn.1674-1579.2018.04.004
    [105] 李思远. 空间扰动条件下的卫星集群自主重构控制研究[博士论文]. 哈尔滨: 哈尔滨工业大学, 2022

    Li Si-Yuan. Research on autonomous reconfiguration control of satellite cluster under space disturbance conditions[Ph. D. dissertation]. Harbin: Harbin Institute of Technology, 2022
    [106] Wang L X, Ye D, Kong X R, Xiao Y. Decentralized receding horizon control for satellite cluster reconfigurations with successive convexification method. IEEE Transactions on Aerospace and Electronic Systems, DOI: 10.1109/TAES.2024.3398607
    [107] Cui Y, Chen Y, Yang D, Shu Z, Huang T, Gong X. Resilient formation tracking of spacecraft swarm against actuation attacks: A distributed Lyapunov-based model predictive approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(11): 7053−7065 doi: 10.1109/TSMC.2023.3292426
    [108] 石子君. 基于多Agent的星群仿真系统研究[硕士论文]. 哈尔滨: 哈尔滨工业大学, 2020

    Shi Zi-Jun. Study on multi-satellite simulation system based on multi-agent methods[Master thesis]. Harbin: Harbin Institute of Technology, 2020
    [109] 白雪, 左小玉, 陈天冀, 徐明. 小卫星集群系统任务规划与控制方法. 航天控制, 2022, 40(04): 61−68 doi: 10.3969/j.issn.1006-3242.2022.04.009

    Bai Xue, Zuo Xiao-Yu, Chen Tian-Ji, Xu Ming. Space mission planning and control method of small satellite swarm system. Aerospace Control, 2022, 40(04): 61−68 doi: 10.3969/j.issn.1006-3242.2022.04.009
  • 加载中
计量
  • 文章访问数:  5
  • HTML全文浏览量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-15
  • 录用日期:  2025-10-27
  • 网络出版日期:  2026-02-12

目录

    /

    返回文章
    返回