|
[1]
|
张豪, 王鹏, 汤国建, 包为民. 高超声速变外形飞行器事件触发有限时间控制. 航空学报, 2023, 44(15): Article No. 528494Zhang Hao, Wang Peng, Tang Guo-Jian, Bao Wei-Min. Event-triggered fast finite time control for hypersonic morphing vehicles. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): Article No. 528494
|
|
[2]
|
Cao C Y, Li F B, Xie Q C, Liao Y X, Huang T W, Yang C H, et al. Integrated guidance and control of morphing flight vehicle via sliding-mode-based robust reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2025, 55(5): 3350−3362 doi: 10.1109/TSMC.2025.3540262
|
|
[3]
|
郭雷, 王陈亮, 王雨, 朱玉凯, 乔建忠. 多源干扰下高超声速飞行器自主精细控制. 宇航学报, 2023, 44(4): 558−565Guo Lei, Wang Cheng-Liang, Wang Yu, Zhu Yu-Kai, Qiao Jian-Zhong. Autonomous refined control for hypersonic flight vehicles with multiple disturbances. Journal of Astronautics, 2023, 44(4): 558−565
|
|
[4]
|
Liang S, Xu B, Sun S S, Tao C G. Dynamic-command-limiting-based AOA constraint control of hypersonic flight vehicle. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(1): 1163−1174 doi: 10.1109/TAES.2024.3452051
|
|
[5]
|
Tang W Q, Long W K, Gao H Y. Model predictive control of hypersonic vehicles accommodating constraints. IET Control Theory & Applications, 2017, 11(15): 2599−2606
|
|
[6]
|
张康康, 周彬, 蔡光斌, 侯明哲. 高超声速飞行器指定时间时变高增益反馈跟踪控制. 自动化学报, 2024, 50(6): 1151−1159Zhang Kang-Kang, Zhou Bin, Cai Guang-Bin, Hou Ming-Zhe. Prescribed-time tracking control of hypersonic vehicles by time-varying high-gain feedback. Acta Automatica Sinica, 2024, 50(6): 1151−1159
|
|
[7]
|
Zhao S W, Wang J C, Xu H T, Wang B H. Composite observer-based optimal attitude-tracking control with reinforcement learning for hypersonic vehicles. IEEE Transactions on Cybernetics, 2023, 53(2): 913−926 doi: 10.1109/TCYB.2022.3192871
|
|
[8]
|
Zhang H, Wang P, Tang G J, Bao W M. Fuzzy disturbance observer-based fixed-time attitude control for hypersonic morphing vehicles. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 6577−6593 doi: 10.1109/TAES.2024.3404911
|
|
[9]
|
路遥. 一种非仿射高超声速飞行器输出反馈控制方法. 自动化学报, 2022, 48(6): 1530−1542Lu Yao. A method of output feedback control for non-affine hypersonic vehicles. Acta Automatica Sinica, 2022, 48(6): 1530−1542
|
|
[10]
|
Yuan Y, Wang Z, Guo L, Liu H P. Barrier Lyapunov functions-based adaptive fault tolerant control for flexible hypersonic flight vehicles with full state constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(9): 3391−3400 doi: 10.1109/TSMC.2018.2837378
|
|
[11]
|
Ding Y B, Yue X K, Li W B, Huang P X, Li N Y. Novel finite-time controller with improved auxiliary adaptive law for hypersonic vehicle subject to actuator constraints. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(3): 3402−3416 doi: 10.1109/TITS.2024.3522567
|
|
[12]
|
Ding H X, Xu B W, Yang W Q, Zhou Y F, Wu X Y. A robust control method for the trajectory tracking of hypersonic unmanned flight vehicles based on model predictive control. Drones, 2025, 9(3): Article No. 223 doi: 10.3390/drones9030223
|
|
[13]
|
Astudillo A, Gillis J, Diehl M, DecréW, Pipeleers G, Swevers J. Position and orientation tunnel-following NMPC of robot manipulators based on symbolic linearization in sequential convex Quadratic Programming. IEEE Robotics and Automation Letters, 2022, 7(2): 2867−2874 doi: 10.1109/LRA.2022.3142396
|
|
[14]
|
Cui P, Gao C S, An R M. Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles. Journal of Systems Engineering and Electronics, 2025, 36(3): 803−813 doi: 10.23919/JSEE.2025.000033
|
|
[15]
|
Dai P, Yan B B, Han T, Liu S X. Barrier lyapunov function based model predictive control of a morphing waverider with input saturation and full-state constraints. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3071−3081 doi: 10.1109/TAES.2022.3222294
|
|
[16]
|
曹承钰, 李繁飙, 廖宇新, 殷泽阳, 桂卫华. 高超声速变外形飞行器建模与固定时间预设性能控制. 自动化学报, 2024, 50(3): 486−504Cao Cheng-Yu, Li Fan-Biao, Liao Yu-Xin, Yin Ze-Yang, Gui Wei-Hua. Modeling and fixed-time prescribed performance control for hypersonic morphing vehicle. Acta Automatica Sinica, 2024, 50(3): 486−504
|
|
[17]
|
Mayne D Q, Rawlings J B, Rao C V, Scokaert P O M. Constrained model predictive control: Stability and optimality. Automatica, 2000, 36(6): 789−814 doi: 10.1016/S0005-1098(99)00214-9
|
|
[18]
|
Zhao J, Chen M. Dynamic event-triggered robust feedback model predictive tracking control of air-breathing hypersonic vehicle based on disturbance preview. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 3291−3305 doi: 10.1109/TAES.2024.3492159
|
|
[19]
|
Mirshams M, Khosrojerdi M. Attitude control of an underactuated spacecraft using tube-based MPC approach. Aerospace Science and Technology, 2016, 48: 140−145 doi: 10.1016/j.ast.2015.09.018
|
|
[20]
|
Ma Y, Cai Y L. Scheduled composite off-line output feedback model predictive control for a constrained hypersonic vehicle using polyhedral invariant sets. Journal of Aerospace Engineering, 2018, 31(4): Article No. 115
|
|
[21]
|
Hu X X, Karimi H R, Wu L G, Guo Y. Model predictive control-based non-linear fault tolerant control for air-breathing hypersonic vehicles. IET Control Theory & Applications, 2014, 8(13): 1147−1153
|
|
[22]
|
Shi L, Wang X S, Cheng Y H. Safe reinforcement learning-based robust approximate optimal control for hypersonic flight vehicles. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11401−11414 doi: 10.1109/TVT.2023.3264243
|
|
[23]
|
刘晓东. 针对一类非线性系统的多变量线性扩张状态观测器及其收敛性分析. 自动化学报, 2016, 42(11): 1758−1764Liu Xiao-Dong. Multi-variable linear extended state observer for a class of nonlinear systems and its convergence analysis. Acta Automatica Sinica, 2016, 42(11): 1758−1764
|
|
[24]
|
Bartusiak E R, Jacobs M A, Chan M W, Comer M L, Delp E J. Predicting hypersonic glide vehicle behavior with stochastic grammars. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 1208−1223 doi: 10.1109/TAES.2023.3335895
|
|
[25]
|
孙爽, 董华龙, 赵自庆, 李文彭, 王宇峰. 基于增量非线性动态逆的倾转旋翼eVTOL单旋翼失效控制. 推进技术, 2025, 46(9): Article No. 202410044Sun Shuang, Dong Hua-Long, Zhao Zi-Qing, Li Wen-Peng, Wang Yu-Feng. Single rotor failure control of tilt-rotor eVTOL based on incremental nonlinear dynamic inversion. Journal of Propulsion Technology, 2025, 46(9): Article No. 202410044
|
|
[26]
|
闫斌斌, 林泽淮, 刘双喜, 闫杰. 基于动态逆控制的高超声速飞行器飞/发一体化控制方法研究. 西北工业大学学报, 2023, 41(5): 878−886 doi: 10.1051/jnwpu/20234150878Yan Bin-Bin, Lin Ze-Huai, Liu Shuang-Xi, Yan Jie. Research on integrated aircraft-engine control method of hypersonic vehicle based on dynamic inversion control. Journal of Northwestern Polytechnical University, 2023, 41(5): 878−886 doi: 10.1051/jnwpu/20234150878
|
|
[27]
|
Yang Y, Yao X M, Xu H Z. Disturbance-observer-based event-triggered model predictive control of nonlinear input-affine systems. Automatica, 2024, 161: Article No. 111504 doi: 10.1016/j.automatica.2023.111504
|
|
[28]
|
Mu C X, Ni Z, Sun C Y, He H B. Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 584−598 doi: 10.1109/TNNLS.2016.2516948
|
|
[29]
|
Li Y J, Liang S, Xu B, Hou M S. Predefined-time asymptotic tracking control for hypersonic flight vehicles with input quantization and faults. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2826−2837 doi: 10.1109/TAES.2021.3068442
|
|
[30]
|
Yu X, Li P, Zhang Y M. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4135−4144 doi: 10.1109/TIE.2017.2772192
|