• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向分段计划负荷的耦合配烧优化模型与硫分约束界调整

黄晓迪 王广博 姜彦辰 李前胜 王永富 柴天佑

黄晓迪, 王广博, 姜彦辰, 李前胜, 王永富, 柴天佑. 面向分段计划负荷的耦合配烧优化模型与硫分约束界调整. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250277
引用本文: 黄晓迪, 王广博, 姜彦辰, 李前胜, 王永富, 柴天佑. 面向分段计划负荷的耦合配烧优化模型与硫分约束界调整. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250277
Huang Xiao-Di, Wang Guang-Bo, Jiang Yan-Chen, Li Qian-Sheng, Wang Yong-Fu, Chai Tian-You. Research on coupled co-firing optimization model for segmented planned loads and sulfur constraint boundary adjustment. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250277
Citation: Huang Xiao-Di, Wang Guang-Bo, Jiang Yan-Chen, Li Qian-Sheng, Wang Yong-Fu, Chai Tian-You. Research on coupled co-firing optimization model for segmented planned loads and sulfur constraint boundary adjustment. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250277

面向分段计划负荷的耦合配烧优化模型与硫分约束界调整

doi: 10.16383/j.aas.c250277 cstr: 32138.14.j.aas.c250277
基金项目: 国家自然科学基金(51775103)资助
详细信息
    作者简介:

    黄晓迪:东北大学机械工程与自动化学院博士研究生. 2021年获得青海大学学士学位.主要研究方向为火电建模及控制. E-mail: 2390007@stu.neu.edu.cn

    王广博:东北大学机械工程与自动化学院博士研究生. 2022年获得济南大学学士学位. 主要研究方向为火电建模优化. E-mail: 2410116@stu.neu.edu.cn

    姜彦辰:华能国际电力股份有限公司大连电厂高级工程师.主要研究方向为火电厂燃料配烧及优化. E-mail: xdhuang2366@163.com

    李前胜:华能国际电力股份有限公司大连电厂正高级工程师.主要研究方向为火电厂运行及燃料配烧. E-mail: 13654059113@163.com

    王永富:东北大学机械工程与自动化学院教授. 1998年获得东北大学机械电子专业硕士学位, 2005年获得东北大学控制理论与控制工程专业博士学位. 主要研究方向为火电建模、控制与优化, 机电系统控制. 本文通信作者. E-mail: yfwang@mail.neu.edu.cn

    柴天佑:中国工程院院士, 东北大学教授, IEEE Fellow, IFAC Fellow. 1985年获得东北大学博士学位. 主要研究方向为自适应控制, 智能解耦控制, 流程工业综合自动化理论、方法与技术. E-mail: tychai@mail.neu.edu.cn

Research on Coupled Co-firing Optimization Model for Segmented Planned Loads and Sulfur Constraint Boundary Adjustment

Funds: Supported by National Natural Science Foundation of China (51775103)
More Information
    Author Bio:

    HUANG Xiao-Di Ph.D. candidate at the School of Mechanical Engineering and Automation, Northeastern University. He received his bachelor degree from Qinghai University in 2021. His main research interest is thermal power modeling and control

    WANG Guang-Bo Ph.D. candidate at the School of Mechanical Engineering and Automation, Northeastern University. He received his bachelor degree from Jinan University in 2022. His main research interest is thermal power modeling and optimization

    JIANG Yan-Chen Senior engineer at Huaneng International Power Company Limited Dalian Power Plant. His main research interest is co-firing and optimization in thermal power plant

    LI Qian-Sheng Professor of engineering at Huaneng International Power Company Limited Dalian Power Plant. His main research interest is the operation of thermal power plants and co-firing

    WANG Yong-Fu Professor at the School of Mechanical Engineering and Automation, Northeastern University. He received his master degree in mechanical engineering and Ph.D. degree in control theory and control engineering from Northeastern University in 1998 and 2005, respectively. His research interests include thermal power modeling, control and optimization, electromechanical system control. Corresponding author of this paper

    CHAI Tian-You Academician of Chinese Academy of Engineering, professor at Northeastern University, IEEE Fellow, IFAC Fellow. He received his Ph.D. degree from Northeastern University in 1985. His research interests include adaptive control, intelligent decoupling control, integrated automation theory, method and technology of industrial process

  • 摘要: 针对目前我国火电企业的配煤掺烧方案制定普遍采用人工经验模式, 导致方案制定效率低、配烧成本非最优的问题, 本文首次系统性开展了面向分段计划负荷的耦合配烧优化模型与硫分约束界调整研究. 首先, 为保证更快速与更精准地制定配烧方案, 通过磨煤机组的切换磨向量建立分段计划负荷与配烧优化模型之间的耦合关系, 实现了以计算机优化模型为主的数字化配烧. 然后, 针对耦合配烧优化模型中的关键环保指标硫分约束, 综合考虑了机组燃煤硫转化效率、脱硫效率与锅炉燃烧等不确定性的影响, 在反演计算硫分约束界的基础上, 基于改进随机配置网络建立了硫分约束界前馈补偿模型. 接下来, 为保证前馈补偿模型的历史训练样本案例数据库的最优性, 通过监测机组的实时生产数据全周期迭代动态更新案例数据库, 进而提升前馈补偿模型的全周期预测精准性. 最后, 基于该模型开发的计算机软件系统运行后, 配烧方案制定时间由原40分钟/次缩减到5分钟/次之内, 显著提升了运行人员的配烧效率; 另外, 在满足带负荷最佳匹配的前提下, 通过优化技术, 掺烧低热值经济煤种的比例明显增加, 相比人工经验制定的配烧方案成本平均下降21元/吨, 取得了良好经济效益.
  • 图  1  火电厂配煤掺烧流程图

    Fig.  1  Flow chart of coal blending in thermal power plant

    图  2  负荷-硫转化效率和负荷—脱硫效率曲线

    Fig.  2  Load-sulfur conversion efficiency and load-desulfurization efficiency curves

    图  3  不同负荷模式下配烧模型求解过程

    Fig.  3  Co-firing model solution process under different load modes

    图  4  分段负荷的硫分约束界调整配烧优化模型

    Fig.  4  Sulfur constraint boundary adjusted co-firing optimization model for segmented loads

    图  5  三层ISCN结构

    Fig.  5  Three-layer ISCN structure

    图  6  ISCN算法流程图

    Fig.  6  Flowchart of ISCN algorithm

    图  7  硫分约束界迭代补偿

    Fig.  7  Sulfur constraint boundary iteration compensation

    图  8  配烧软件系统

    Fig.  8  Co-firing software system

    图  9  硫分约束界迭代调整的成本节约效果

    Fig.  9  Cost saving effect of iterative adjustment of sulfur constraint boundary

    图  10  迭代过程中硫分约束界与配烧成本的动态演化

    Fig.  10  The dynamic evolution of sulfur constraint boundary and co-firing costs during the iterative process

    表  1  计划负荷与煤耗关系数据

    Table  1  Relationship data between planned load and coal consumption

    负荷(MW)煤耗(g/kWh)负荷(MW)煤耗(g/kWh)
    50432.5225311.3
    75379.1250308.5
    100352.7275306.3
    125337.2300304.6
    150327.1325303.3
    175320.1350302.2
    200315.1375301.3
    下载: 导出CSV

    表  2  煤场存煤信息

    Table  2  Coal storage information

    煤种编号${\boldsymbol{Q}}$(kcal/kg)${\boldsymbol{S}}$(%)${\boldsymbol{V}}$(%)${\boldsymbol{A}}$(%)${\boldsymbol{M}}$(%)${\boldsymbol{P}}$(CNY/t)
    华能优112976.000.3526.342.9546.241004.03
    神混124802.000.6818.4223.9112.501046.20
    印尼褐煤132771.000.8825.692.9247.20746.00
    平混214725.000.9226.2029.296.40971.71
    伊泰224582.000.3723.8720.6215.201070.00
    印尼褐煤234319.001.1824.2827.869.80866.82
    印尼烟煤315562.000.7639.7715.059.201134.88
    大友325008.001.0922.8933.427.00948.25
    印尼褐煤332733.000.3724.386.3747.14877.79
    下载: 导出CSV

    表  4  磨煤机设置

    Table  4  Configuration of coal mill

    磨煤机编号职能${R^{\max }}/{R^{\min }}$(t/h) $v$(t/h)
    #1磨煤机深度调峰50/250.2
    #2磨煤机深度调峰50/250.2
    #3磨煤机中高50/25
    #4磨煤机50/25
    下载: 导出CSV

    表  3  配烧参数设置

    Table  3  Co-firing parameters setting

    负荷段名称负荷热值约束环保约束安全约束
    $\angle_e$(MW)$\angle_h$(MW)$\angle_g$(MW)$\angle_i$(MW)$Q^{\rm{L}}$(kcal/kg)$S^{\rm{U}}$(%)$M^{\rm{U}}$/ $M^{\rm{L}}$(%)$V^{\rm{U}}$/$V^{\rm{L}}$/(%)$A^{\rm{U}}$/$A^{\rm{L}}$(%)
    深度调峰$\angle_1$701559022050.6850/1040/2030/0
    中高负荷$\angle_2$16015518026810.4550/1040/2030/0
    高负荷$\angle_3$27015529041300.4550/1040/2030/0
    下载: 导出CSV

    表  5  人工配烧与模型配烧效益对比

    Table  5  Comparison of benefits between manual co-firing and model co-firing

    煤仓 煤种 比例 热值(kcal/kg) 硫分(%) 价格(CNY/t)
    人工 模型 人工 模型 人工 模型 人工 模型 人工 模型
    #1煤仓 1D2/2D2 2D3/3D3 20/80 41/59 4626 3483 0.37 0.37 916.23 955.73
    #2煤仓 1D3/2D2 2D2/2D3 35/65 70/30 3950 4699 0.45 0.61 1082.98 1009.80
    #3煤仓 3D3 3D3 单烧 单烧 2733 2733 0.53 0.37 835.93 877.79
    #4煤仓 2D2 2D2/3D3 单烧 80/20 4582 4212 0.37 0.60 1070.00 1031.56
    深调 4288 3426 0.49 0.37 1011.06 982.77$\downarrow $28.29
    中高 3770 3468 0.45 0.45 966.64 947.77$\downarrow $18.87
    4386 4131 0.45 0.45 1030.72 999.03 $\downarrow $31.69
    下载: 导出CSV

    表  6  训练样本数据案例库

    Table  6  Training sample data repository

    负荷段 输入${\boldsymbol{U}}$ 输出${\boldsymbol{Y}}$ 评价指标
    $\angle$(MW) ${S^{\rm{U}}}(\%) $ $\Delta {S^{\rm{U}}}(\%) $ $E$$($无单位$) $
    深调 65 0.68 0.19 13.94
    深调 88 0.68 0.21 14.51
    深调 107 0.68 0.23 14.27
    $ \cdots $ $ \cdots $ $ \cdots $ $ \cdots $ $ \cdots $
    中高 136 0.45 0.19 14.22
    中高 174 0.45 0.16 14.96
    中高 220 0.45 0.15 14.66
    $ \cdots $ $ \cdots $ $ \cdots $ $ \cdots $ $ \cdots $
    260 0.45 0.17 15.02
    300 0.45 0.15 13.15
    $ \cdots $ $ \cdots $ $ \cdots $ $ \cdots $ $ \cdots $
    350 0.45 0.16 13.73
    下载: 导出CSV

    表  7  硫分约束界迭代调整

    Table  7  Sulfur constraint boundary iterative adjustment

    负荷段参数未调硫$d=1$$d=2$$d=3$
    深调负荷段$\angle$(MW)90909090
    ${S^{\text{U}}}(\%) $0.680.680.891.02
    $\Delta \widehat S^{\rm{U}}(\%) $0.000.210.130.07
    $e^ {S{O_{2}}}$($\rm{mg/m^3}$)11.896.825.274.83
    价格(CNY/t)982.77953.13 $\downarrow $29.64940.80 $\downarrow $12.33918.17 $\downarrow $22.63
    中高负荷段$\angle$(MW)180180180180
    ${S^{\text{U}}}(\%) $0.450.450.620.69
    $ \Delta \widehat S^{\rm{U}}(\%) $0.000.170.070.05
    $e^ {S{O_{2}}}$($\rm{mg/m^3}$)13.187.475.574.32
    价格(CNY/t)947.77892.87 $\downarrow $54.90870.91 $\downarrow $21.96860.78 $\downarrow $10.13
    高负荷段$\angle$(MW)290290290290
    ${S^{\text{U}}}(\%) $0.450.450.590.68
    $\Delta \widehat S^{\rm{U}}(\%) $0.000.140.090.05
    $e^ {S{O_{2}}}$($\rm{mg/m^3}$)11.427.566.024.76
    价格(CNY/t)999.03956.86 $\downarrow $42.17929.71 $\downarrow $27.15914.60 $\downarrow $15.11
    下载: 导出CSV

    表  8  模型配烧调硫分约束前后方案对比

    Table  8  Comparison of schemes before and after sulfur constraint adjustment in model co-firing

    煤仓 煤种 比例 热值(kcal/kg) 硫分(%) 价格(CNY/t)
    未调硫 调硫 未调硫 调硫 未调硫 调硫 未调硫 调硫 未调硫 调硫
    #1煤仓 2D3/3D3 2D3/3D3 41/59 53/47 3483 3930 0.37 0.80 955.73 871.94
    #2煤仓 2D2/2D3 2D2/3D3 70/30 45/55 4699 3566 0.61 0.37 1009.80 964.40
    #3煤仓 3D3 1D3 单烧 单烧 2733 2771 0.37 0.88 877.79 746.00
    #4煤仓 2D2/3D3 2D3/2D2 80/20 80/20 4212 4898 0.60 0.76 1031.56 907.46
    深调 3426 3748 0.37 0.59 982.77 918.17$\downarrow $64.60
    中高 3468 3422 0.45 0.68 947.77 860.78 $\downarrow $86.99
    4131 4131 0.45 0.73 999.03 914.60 $\downarrow $84.43
    下载: 导出CSV

    表  9  模型配煤调硫分约束前后方案对比(500MW)

    Table  9  Comparison of before and after schemes for model coal blending and sulfur adjustment constraints (500 MW)

    煤仓 煤种 比例 热值(kcal/kg) 硫分(%) 价格(CNY/t)
    未调硫 调硫 未调硫 调硫 未调硫 调硫 未调硫 调硫 未调硫 调硫
    #1煤仓 3D3 3D3 单烧 单烧 2733 2733 0.37 0.37 877.79 877.79
    #2煤仓 3D3 1D3/3D3 单烧 41/59 2733 2749 0.37 0.58 877.79 845.74
    #3煤仓 1D3/2D2 1D3/2D3 50/50 58/42 4073 3885 0.52 1.03 982.49 833.73
    #4煤仓 1D3/3D3 1D3 39/61 单烧 2841 2771 0.54 0.88 847.68 800.00
    #5煤仓 1D2/2D2 1D2/2D3 56/44 80/20 4706 4878 0.54 0.90 1056.52 967.84
    深调 2733 2741 0.37 0.48 877.79 861.76 $\downarrow $16.03
    中高 3095 3034 0.45 0.72 896.44 839.31 $\downarrow $57.13
    3561 3561 0.45 0.72 948.68 881.28 $\downarrow $67.40
    下载: 导出CSV

    表  10  不同模型配烧方案对比

    Table  10  Comparison of co-firing schemes for different models

    煤仓 煤种 比例 热值(kcal/kg) 硫分(%) 价格(CNY/t)
    I II III I II III I II III I II III I II III
    #1煤仓 2D2/3D3 2D2/3D3 2D3/3D3 62/38 57/43 53/47 3877 3786 3930 0.37 0.37 0.80 996.70 987.24 871.94
    #2煤仓 2D3/3D2 2D3/3D3 2D2/3D3 80/20 44/56 45/55 4983 3714 3566 1.16 0.72 0.37 883.11 873.00 964.40
    #3煤仓 1D3/3D3 1D3/2D3 1D3 56/44 80/20 单烧 2754 3212 2771 0.66 0.94 0.88 803.37 770.16 746.00
    #4煤仓 2D3/3D3 2D3/3D1 2D3/2D2 36/64 80/20 80/20 3531 5094 4898 0.66 1.10 0.76 873.89 920.43 907.46
    深调 4430 4015 3750 0.77 0.55 0.59 939.91 930.12 918.17
    中高 3872 3571 3422 0.73 0.68 0.68 894.39 876.80 860.78
    4131 4189 4131 0.73 0.73 0.73 917.90 926.89 914.60
    下载: 导出CSV
  • [1] 国家能源局. 国家能源局发布2024年1-8月份全国电力工业统计数据. 电力勘测设计, 2024, 9: 39

    National Energy Administration. National Energy Administration releases national power industry statistics for 1-8 months of 2024. Electric Power Survey & Design, 2024, 9: 39
    [2] Lin B Q, Shi F Y. Coal price, economic growth and electricity consumption in China under the background of energy transition. Energy Policy, 2024, 195: Article No. 114400 doi: 10.1016/j.enpol.2024.114400
    [3] Song X H, Zhang B J. Study on the cost composition and control of coal power in China under the perspective of policy evolution. Heliyon, 2024, 10(16): Article No. e36098 doi: 10.1016/j.heliyon.2024.e36098
    [4] Prasad S K, Mangaraj B K. A multi-objective competitive-design framework for fuel procurement planning in coal-fired power plants for sustainable operations. Energy Economics, 2022, 108: Article No. 105914 doi: 10.1016/j.eneco.2022.105914
    [5] Sherali H, Puri R. Models for a coal blending and distribution problem. Omega, 1993, 21(2): 235−243 doi: 10.1016/0305-0483(93)90056-Q
    [6] Li J, Jiang Y C, Li Q S, Wang Y F. Multi-stage stochastic programming for thermal power plant coal procurement considering long-term contract under uncertainties. Computers & Chemical Engineering, 2025, 203: Article No. 109323
    [7] Yan S Y, Lv C W, Yao L M, Hu Z N, Wang F J. Hybrid dynamic coal blending method to address multiple environmental objectives under a carbon emissions allocation mechanism. Energy, 2022, 254: Article No. 124297 doi: 10.1016/j.energy.2022.124297
    [8] Nakata E, Fujimoto H, Terazono K. Expert System for coal blending. IFAC Proceedings Volumes, 1992, 25: 109−114
    [9] Guerras S L, Martín M. Optimal gas treatment and coal blending for reduced emissions in power plants: A case study in Northwest Spain. Energy, 2019, 169: 739−749 doi: 10.1016/j.energy.2018.12.089
    [10] Tillman D, Duong D. Managing slagging at Monroe power plant using on-line coal analysis and fuel blending. Fuel Processing Technology, 2007, 88(11-12): 1094−1098 doi: 10.1016/j.fuproc.2007.06.027
    [11] 杨勇平, 杨志平, 徐钢, 王宁玲. 中国火力发电能耗状况及展望. 中国电机工程学报, 2013, 33(23): 1−11 doi: 10.13334/j.0258-8013.pcsee.2013.23.005

    Yang Yong-Ping, Yang Zhi-Ping, Xu Gang, Wang Ning-Ling. Situation and prospect of energy consumption for China’s thermal power generation. Proceedings of the CSEE, 2013, 33(23): 1−11 doi: 10.13334/j.0258-8013.pcsee.2013.23.005
    [12] Nawaz Z, Ali U. Techno-economic evaluation of different operating scenarios for indigenous and imported coal blends and biomass co-firing on supercritical coal fired power plant performance. Energy, 2020, 212: Article No. 118721 doi: 10.1016/j.energy.2020.118721
    [13] 李晗, 宋磊, 李鑫, 郑宇轩, 郑博聪, 王培键. 智能配煤技术的发展与应用. 煤炭加工与综合利用, 2024, 3: 66−69

    Li Han, Song Lei, Li Xin, Zheng Yu-Xuan, Zheng Bo-Cong, Wang Peng-Jian. Review of the development of intelligent coal blending system. Cal Processing & Comprehensive Utlization, 2024, 3: 66−69
    [14] Xia J, Chen G, Tan P, Zhang C. An online case-based reasoning system for coal blends combustion optimization of thermal power plant. International Journal of Electrical Power & Energy Systems, 2014, 62: 299−311
    [15] 钟剑锋, 赵海宝, 赵晨, 楼亦刚, 傅文斌. 智慧环保技术在燃煤电厂中的研究和应用. 洁净煤技术, 2025, 31: 203−208

    Zhong Jian-Feng, Zhao Hai-Bao, Zhao Chen, Lou Yi-Gang, Fu Wen-Bin. Research and application of intelligent environmental protection technology in coal-fired power plants. Clean Coal Technology, 2025, 31: 203−208
    [16] 华志刚, 郭荣, 崔希, 汪勇. 火电智慧电厂技术路线探讨与研究热力发电. 热力发电, 2019, 48(10): 8−14

    Hua Zhi-Gang, Guo Rong, Cui Xi, Wang Yong. Discussion and study on technical route of smart thermal power plant. Thermal Power Generation, 2019, 48(10): 8−14
    [17] Zhou Z Y, Lu J Y, Feng Q, Liu W T. Review on occurrence, speciation, transition and fate of sulfur in typical ultra-low emission coal-fired power plants. Journal of the Energy Institute, 2022, 100: 259−276 doi: 10.1016/j.joei.2021.12.004
    [18] Kang J, Su T, Jin H Y, Wang Y, Wu L Q, Fan X L. Risk analysis of boiler overpressure explosion based on complex network and fuzzy Bayesian inference. Engineering Failure Analysis, 2025, 170: Article No. 109261 doi: 10.1016/j.engfailanal.2025.109261
    [19] Zhong Y X, Wang X, Xu G, Ning X Y, Zhou L, Tang W, et al. Investigation on slagging and high-temperature corrosion prevention and control of a 1000 MW ultra supercritical double tangentially fired boiler. Energy, 2023, 275: Article No. 127455 doi: 10.1016/j.energy.2023.127455
    [20] Wang D H, Li M. Stochastic configuration networks: Fundamentals and algorithms. IEEE Transactions on Cybernetics, 2017, 47(10): 3466−3479 doi: 10.1109/TCYB.2017.2734043
    [21] Dang G, Wang D H. An improved fuzzy recurrent stochastic configuration network for modeling nonlinear systems. IEEE Transactions on Fuzzy Systems, 2025, 33(4): 1265−1276 doi: 10.1109/TFUZZ.2024.3513394
    [22] Dai W, Li D, Zhou P, Chai T Y. Stochastic configuration networks with block increments for data modeling in process industries. Information Sciences, 2019, 484: 367−386 doi: 10.1016/j.ins.2019.01.062
    [23] 代伟, 张政煊, 杨春雨, 马小平. 基于SCN数据模型的SISO非线性自适应控制. 自动化学报, 2024, 50(10): 2002−2012

    Dai Wei, Zhang Zheng-Xuan, Yang Chun-Yu, Ma Xiao-Ping. Adaptive control of SISO nonlinear system using data-driven SCN model. Acta Automatica Sinica, 2024, 50(10): 2002−2012
    [24] Lu J, Ding J L, Liu C X, Chai T Y. Hierarchical-bayesian-based sparse stochastic configuration networks for construction of prediction intervals. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3560−3571 doi: 10.1109/TNNLS.2021.3053306
    [25] Jamal R, Khan N H, Ebeed M, Zeinoddini-Meymand H, Shahnia F. An improved pelican optimization algorithm for solving stochastic optimal power flow problem of power systems considering uncertainty of renewable energy resources. Results in Engineering, 2025, 26: Article No. 104553 doi: 10.1016/j.rineng.2025.104553
    [26] 赵健, 刘士新. 火电厂动力配煤优化模型研究. 东北大学学报(自然科学版), 2015, 36(10): 1388−1392

    Zhao Jian, Liu Shi-Xin. Optimization model of steam coal blending in coal-fired power plant. Journal of Northeastern University (Natural Science), 2015, 36(10): 1388−1392
    [27] 付轩熠, 茅大钧, 印琪民. 基于多种算法的火电厂配煤优化方法研究. 煤炭工程, 2018, 50(9): 150−154

    Fu Xuan-Yi, Mao Da-Jun, Yin Qi-Min. Research on coal blending optimization method based on multipe algorithms in thermal power plant. Coal Engineering, 2018, 50(9): 150−154
    [28] Liu M, Yu Z Q, Li B R, Wang Q J, Ren H W, Xu D. Coal allocation optimization based on a hybrid residual prediction model with an improved genetic algorithm. Engineering Applications of Artificial Intelligence, 2024, 137: Article No. 109072 doi: 10.1016/j.engappai.2024.109072
    [29] Xu W L, Zhong W Q, Zhou G W, Chen X, Liu X J. Optimization of air distribution and coal blending in pulverized coal boilers for high-temperature corrosion prevention based on POD reduced-order modeling. Applied Thermal Engineering, 2024, 255: Article No. 123705 doi: 10.1016/j.applthermaleng.2024.123705
    [30] 孙庶. 动力配煤几个主要煤质指标可加性的论证. 煤炭技术, 2009, 28(5): 164−166

    Sun Shu. Some of the main driving force for coal blending coal quality indicators additive demonstration. Coal Technology, 2009, 28(5): 164−166
    [31] 陶翔, 陈玲红, 蒋旭光, 吴学成, 岑可法. 动力配煤下入炉煤质参数快速计算分析. 能源工程, 2022, 42(5): 1−8

    Tao Xiang, Chen Ling-Hong, Jiang Xu-Guang, Wu Xue-Cheng, Cen Ke-Fa. Rapid calculation and analysis of furnace coal quality parameters under power coal blending. Energy Engineering, 2022, 42(5): 1−8
  • 加载中
计量
  • 文章访问数:  11
  • HTML全文浏览量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-25
  • 录用日期:  2025-09-18
  • 网络出版日期:  2025-12-25

目录

    /

    返回文章
    返回