2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

软件定义智能控制系统

柴天佑 郑锐 贾瑶 黄新宇 郑秀萍 李智

柴天佑, 郑锐, 贾瑶, 黄新宇, 郑秀萍, 李智. 软件定义智能控制系统. 自动化学报, 2025, 51(10): 1−13 doi: 10.16383/j.aas.c250274
引用本文: 柴天佑, 郑锐, 贾瑶, 黄新宇, 郑秀萍, 李智. 软件定义智能控制系统. 自动化学报, 2025, 51(10): 1−13 doi: 10.16383/j.aas.c250274
Chai Tian-You, Zheng Rui, Jia Yao, Huang Xin-Yu, Zheng Xiu-Ping, Li Zhi. Software-defined intelligent control system. Acta Automatica Sinica, 2025, 51(10): 1−13 doi: 10.16383/j.aas.c250274
Citation: Chai Tian-You, Zheng Rui, Jia Yao, Huang Xin-Yu, Zheng Xiu-Ping, Li Zhi. Software-defined intelligent control system. Acta Automatica Sinica, 2025, 51(10): 1−13 doi: 10.16383/j.aas.c250274

软件定义智能控制系统

doi: 10.16383/j.aas.c250274 cstr: 32138.14.j.aas.c250274
基金项目: 辽宁辽河实验室研究项目 (LLL23ZZ-05-01), 辽宁省重点研发计划项目 (2023JH26/10200011), 国家自然科学基金重大项目(61991404), 国家重点研发计划项目(2024YFB3309700), 辽宁省科技重大专项(2024JH1/11700048)资助
详细信息
    作者简介:

    柴天佑:中国工程院院士, 东北大学教授.IEEE Fellow, IFAC Fellow, 欧亚科学院院士. 主要研究方向为自适应控制, 智能解耦控制, 流程工业综合自动化理论、方法与技术. 本文通信作者. E-mail: tychai@mail.neu.edu.cn

    郑锐:流程工业综合自动化全国重点实验室博士研究生. 主要研究方向为软件定义智能控制技术及决策与控制一体化智能系统技术. E-mail: 2010263@stu.neu.edu.cn

    贾瑶:流程工业综合自动化全国重点实验室副教授. 主要研究方向为智能运行控制技术, 智能控制技术, 智能检测技术, 决策与控制一体化智能系统技术. E-mail: jiayao@mail.neu.edu.cn

    黄新宇:流程工业综合自动化全国重点实验室讲师. 主要研究方向为软件定义控制, 决策与控制一体化软件平台. E-mail: huangxinyu@mail.neu.edu.cn

    郑秀萍:流程工业综合自动化全国重点实验室教授, 主要研究方向为流程工业智能管控系统. E-mail: xiupingzheng@mail.neu.edu.cn

    李智:流程工业综合自动化全国重点实验室教授. 主要研究方向为智能控制系统与智能机器人. E-mail: lizhi1@mail.neu.edu.cn

Software-defined Intelligent Control System

Funds: Supported by Research Program of the Liaoning Liaohe Laboratory (LLL23ZZ-05-01), Key Research and Development Program of Liaoning Province (2023JH26/10200011), National Natural Science Foundation of China (61991404), National Key Research and Development Program of China (2024YFB3309700), and Science and Technology Major Project of Liaoning Province (2024JH1/11700048)
More Information
    Author Bio:

    CHAI Tian-You Academician of Chinese Academy of Engineering, professor at Northeastern University, IEEE Fellow, IFAC Fellow, and academician of the International Eurasian Academy of Sciences. His research interest covers adaptive control, intelligent decoupling control, as well as theories, methods and technology of synthetical automation for process industries. Corresponding author of this paper

    ZHENG Rui Ph.D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries. His research interest covers intelligent control technology and intelligent system technology integrating decision-making and control

    JIA Yao Associate professor at the State Key Laboratory of Synthetical Automation for Process Industries. His research interest covers intelligent operation control technology, intelligent control technology, intelligent detection technology and intelligent system technology integrating decision-making and control

    HUANG Xin-Yu Lecturer at the State Key Laboratory of Synthetical Automation for Process Industries. His research interest covers software-defined control and integrated decision-making and control software platforms

    ZHENG Xiu-Ping Professor at the State Key Laboratory of Synthetical Automation for Process Industries. Her research interest is intelligent process industry management and control system

    LI Zhi Professor at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. His research interest covers intelligent control system and intelligent robots

  • 摘要: 本文针对PLC和虚拟PLC的PID难以优化整定的难题, 将建模、控制、优化和深度学习与强化学习相结合, 提出了无模型PID在线自优化整定算法. 将工业云与边缘计算、软件定义实时与可靠保障机制的双通道通信与所提出的PID整定算法相结合, 提出了云端协同的软件定义智能控制系统. 云为基于云服务器的智能控制软件开发平台; 端为基于工业服务器的智能控制软件. 智能控制软件由虚拟PLC PID、PID预优化整定、控制过程数字孪生、在线自优化整定、自适应切换机制组成. 采用研制的软件定义智能控制系统研究实验平台, 开展了所提出的控制系统与国外先进PLC和工业PC的无模型整定软件PID控制系统的仿真与物理对比实验. 实验结果表明本文的软件定义智能控制系统可进行控制器参数自优化整定, 控制性能显著优于国外无模型整定软件的PID控制系统.
  • 图  1  无模型PID在线自优化整定算法结构

    Fig.  1  Model-free PID online self-optimizing tuning algorithm structure

    图  2  PID控制过程与数字孪生模型

    Fig.  2  PID control process and digital twin model

    图  3  PID控制器参数整定结构

    Fig.  3  PID controller parameter tuning structure

    图  4  基于强化学习的PID整定算法结构

    Fig.  4  Structure of PID tuning algorithm based on reinforcement learning

    图  5  工业智能控制系统结构图

    Fig.  5  Block diagram of industrial intelligent control system

    图  6  软件定义的智能控制系统结构

    Fig.  6  Software-defined intelligent control system architecture

    图  7  智能控制软件模块之间数据交互图

    Fig.  7  Data interaction diagram between intelligent control software modules

    图  8  软件定义的智能控制系统研究实验平台

    Fig.  8  Research and experimental platform for software-defined intelligent control system

    图  9  西门子无模型整定PID控制输出与输入曲线

    Fig.  9  Input and output curves of PID control tuned by Siemens model-free tuning software

    图  10  倍福无模型整定PID控制输出与输入曲线

    Fig.  10  Input and output curves of PID control tuned by Beckhoff model-free tuning software

    图  11  本文无模型整定PID控制输出与输入曲线

    Fig.  11  Input and output curves of PID control tuned by this article model-free tuning software

    图  12  西门子无模型整定PID控制输出与输入曲线

    Fig.  12  Input and output curves of PID control tuned by Siemens model-free tuning software

    图  13  倍福无模型整定PID控制输出与输入曲线

    Fig.  13  Input and output curves of PID control tuned by Beckhoff model-free tuning software

    图  14  本文无模型整定PID控制输出与输入曲线

    Fig.  14  Input and output curves of PID control tuned by this article model-free tuning software

    表  1  本文、西门子、倍福控制性能指标对比

    Table  1  Comparison of control performance indicators between Siemens, Beckhoff and this article

    性能指标$ 0 \leq k< 2590 $$ 2590 \leq k< 4600 $$ 4600 \leq k \leq 5000 $
    $ J_e $$ \bar{J}_e $$ \bar{J}_u $$ J_e $$ \bar{J}_e $$ \bar{J}_u $$ J_e $$ \bar{J}_e $$ \bar{J}_u $
    西门子0.0260.0410.0000.1120.0670.0130.1320.1350.018
    倍福0.0190.0390.0000.0630.0530.0173.1810.8480.620
    本文0.0180.0310.0000.0600.0510.0120.0360.0520.000
    下载: 导出CSV

    表  2  本文、西门子、倍福控制性能指标对比

    Table  2  Comparison of control performance indicators between Siemens, Beckhoff and this article

    性能指标$ 0 \leq k< 290 $$ 290 \leq k \leq 600 $
    $ J_e $$ \bar{J}_e $$ \bar{J}_u $$ J_e $$ \bar{J}_e $$ \bar{J}_u $
    西门子215.180.3790.1756.450.1770.04
    倍福1915.880.6510.262118.480.7650.25
    本文163.210.2070.0028.130.0640.00
    下载: 导出CSV
  • [1] Gaffurini M, Bellagente P, Depari A, Flammini A, Sisinni E, Ferrari P. Virtual PLC in industrial edge platform: performance evaluation of supervision and control communication. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1−10
    [2] 柴天佑. 工业人工智能与工业互联网协同实现生产过程智能化及其未来展望. 控制工程, 2023, 30(8): 1378−1388

    Chai Tian-You. Industrial AI and industrial internet collaboratively achieving production process intelligence and its future perspectives. Control Engineering of China, 2023, 30(8): 1378−1388
    [3] Perez D J, Waltl J, Prenzel L, Steinhorst S. How real (time) are virtual PLCs? In: Proceedings of 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation. Stuttgart, Germany: IEEE, 2022. 1-8
    [4] Cruz T, Simões P, Monteiro E. Virtualizing programmable logic controllers: toward a convergent approach. IEEE Embedded Systems Letters, 2016, 8(4): 69−72 doi: 10.1109/LES.2016.2608418
    [5] Hegazy T, Hefeeda M. Industrial automation as a cloud service. IEEE Transactions on Parallel and Distributed Systems, 2014, 26(10): 2750−2763
    [6] Xia Y Q, Zhang Y, Dai L, Zhan Y F, Guo Z H. A brief survey on recent advances in cloud control systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(7): 3108−3114
    [7] Shi W S, Cao J, Zhang Q, Li Y H Z, Xu L Y. Edge computing: Vision and challenges. IEEE Internet of Things Journal, 2016, 3(5): 637−646 doi: 10.1109/JIOT.2016.2579198
    [8] Sollfrank M, Loch F, Denteneer S, Vogel-Heuser B. Evaluating docker for lightweight virtualization of distributed and time-sensitive applications in industrial automation. IEEE Transactions on Industrial Informatics, 2020, 17(5): 3566−3576
    [9] Vyatkin V. IEC 61499 as enabler of distributed and intelligent automation: state-of-the-art review. IEEE Transactions on Industrial Informatics, 2011, 7(4): 768−781 doi: 10.1109/TII.2011.2166785
    [10] Lyu G, Brennan R W. Towards IEC 61499-based distributed intelligent automation: a literature review. IEEE Transactions on Industrial Informatics, 2020, 17(4): 2295−2306
    [11] Dai W B, Zhang Y Y, Kong L B, Christensen J H, Huang D. Design of industrial edge applications based on IEC 61499 microservices and containers. IEEE Transactions on Industrial Informatics, 2022, 19(7): 7925−7935
    [12] Jin J, Pang Z B, Kua J, Zhu Q Y, Johansson K H, Marchenko N. Cloud-fog automation: The new paradigm towards autonomous industrial cyber-physical systems. IEEE Journal on Selected Areas in Communications, 2025, 43(9): 2917−2937 doi: 10.1109/JSAC.2025.3574587
    [13] 柴天佑, 郑锐, 贾瑶, 黄新宇, 宋延杰. 软件定义智能控制系统未来发展展望. 东北大学学报, 2025, 46(7): 1−10

    Chai Tian-You, Zheng Rui, Jia Yao, Huang Xin-Yu, Song Yan-Jie. Development and prospects for software-defined intelligent control systems. Journal of Northeastern University (Natural Science), 2025, 46(7): 1−10
    [14] Guo L. Feedback and uncertainty: some basic problems and results. Annual Reviews in Control, 2020, 49: 27−36 doi: 10.1016/j.arcontrol.2020.04.001
    [15] Samad T. A survey on industry impact and challenges thereof [technical activities]. IEEE Control Systems Magazine, 2017, 37(1): 17−18 doi: 10.1109/MCS.2016.2621438
    [16] Borase R P, Maghade D K, Sondkar S Y, Pawar S N. A review of PID control, tuning methods and applications. International Journal of Dynamics and Control, 2021, 9(2): 818−827 doi: 10.1007/s40435-020-00665-4
    [17] Åström K J, Hä gglund T. PID Controllers: Theory, Design and Tuning(Second edition). Research Triangle Park: ISA, 1995. 64-69
    [18] 柴天佑, 郑锐, 邢方新, 贾瑶, 郑秀萍. 工业过程控制智能化及未来发展展望. 中国科学: 信息科学, 2025, 55(7): 1555−1570 doi: 10.1360/SSI-2025-0108

    Chai Tian-You, Zheng Rui, Xing Fang-Xin, Jia Yao, Zheng Xiu-Ping. Intelligence for industrial process control: development and prospects. Scientia Sinica (Informationis), 2025, 55(7): 1555−1570 doi: 10.1360/SSI-2025-0108
    [19] Garpinger O, Hä gglund T, Åström K J. Performance and robustness trade-offs in PID control. Journal of Process Control, 2014, 24(5): 568−577 doi: 10.1016/j.jprocont.2014.02.020
    [20] Ortega R, Kelly R. PID self-tuners: some theoretical and practical aspects. IEEE Transactions on Industrial Electronics, 2007, 31(4): 332−338
    [21] Kim J H, Choi K K. Design of direct pole placement PID self-tuners. IEEE Transactions on Industrial Electronics, 1987, 34(3): 351−356
    [22] Wang Q G, Zhang Z P, Karl J A, Zhang Y, Zhang Y. Guaranteed dominant pole placement with PID controllers. IFAC Proceedings Volumes, 2008, 41(2): 5842−5845 doi: 10.3182/20080706-5-KR-1001.00985
    [23] Ho W K, Lee T H, Han H P, Y Hong. Self-tuning IMC-PID control with interval gain and phase margins assignment. IEEE Transactions on Control Systems Technology, 2002, 9(3): 535−541
    [24] Verma B, Padhy P K. Indirect IMC-PID controller design. IET Control Theory & Applications, 2019, 13(2): 297−305
    [25] Åström K J, Panagopoulos H, Hä gglund T. Design of PI controllers based on non-convex optimization. Automatica, 1998, 34(5): 585−601 doi: 10.1016/S0005-1098(98)00011-9
    [26] Sekara T B, Matausek M R. Optimization of PID controller based on maximization of the proportional gain under constraints on robustness and sensitivity to measurement noise. IEEE Transactions on Automatic Control, 2009, 54(1): 184−189 doi: 10.1109/TAC.2008.2008359
    [27] Mercader P, Åström K J, Baños A, Hä gglund T. Robust PID design based on QFT and convex–concave optimization. IEEE Transactions on Control Systems Technology, 2016, 25(2): 441−452
    [28] 刘宁, 柴天佑. PID控制器参数的优化整定方法. 自动化学报, 2023, 49(11): 2272−2285

    Liu Ning, Chai Tian-You. An optimal tuning method of PID controller parameters. Acta Automatica Sinica, 2023, 49(11): 2272−2285
    [29] Ziegler J G, Nichols N B. Optimum settings for automatic controllers. Transactions of the American Society of Mechanical Engineers, 1942, 64(8): 759−765 doi: 10.1115/1.4019264
    [30] Chien K L, Hrones J A, Reswick J B. On the automatic control of generalized passive systems. Transactions of the American Society of Mechanical Engineers, 1952, 74(2): 175−183 doi: 10.1115/1.4015724
    [31] 柴天佑, 周正, 郑锐, 刘宁, 贾瑶. 端边云协同的PID整定智能系统. 自动化学报, 2023, 49(3): 514−527

    Chai Tian-You, Zhou Zheng, Zheng Rui, Liu Ning, Jia Yao. PID tuning intelligent system based on end-edge-cloud collaboration. Acta Automatica Sinica, 2023, 49(3): 514−527
    [32] Chai T Y, Xing F X, Zheng R, Jia Y, Song Y J. An Anti-Latency Intelligent Control for 5G Wireless Networks Based on End-Edge-Cloud Collaboration. IEEE Journal on Selected Areas in Communications, DOI: 10.1109/JSAC.2025.3574593
    [33] 柴天佑, 丁进良. 流程工业智能优化制造. 中国工程科学, 2018, 20(4): 51−58 doi: 10.15302/J-SSCAE-2018.04.009

    Chai Tian-You, Ding Jin-Liang. Smart and optimal manufacturing for process industry. Strategic Study of CAE, 2018, 20(4): 51−58 doi: 10.15302/J-SSCAE-2018.04.009
    [34] 柴天佑, 刘强, 丁进良, 卢绍文, 宋延杰. 工业互联网驱动的流程工业智能优化制造新模式研究展望. 中国科学: 技术科学, 2022, 52(1): 14−25 doi: 10.1360/SST-2021-0405

    Chai Tian-You, Liu Qiang, Ding Jin-Liang, Lu Shao-Wen, Song Yan-Jie. Perspectives on industrial-internet-driven intelligent optimized manufacturing mode for process industries. Scientia Sinica (Technologica), 2022, 52(1): 14−25 doi: 10.1360/SST-2021-0405
    [35] Rolf I. Digital Control Systems. Berlin Heidelberg: Springer-Verlag, 2013
    [36] Chai T Y, Zhang J W, Yang T. Demand forecasting of the fused magnesia smelting process with system identification and deep learning. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8387−8396 doi: 10.1109/TII.2021.3065930
    [37] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735−1780 doi: 10.1162/neco.1997.9.8.1735
    [38] Cavalieri S, Chiacchio F. Analysis of OPC UA performances. Computer Standards & Interfaces, 2013, 36(1): 165−177
    [39] Nie Z Y, Li Z Y, Wang Q G, Gao Z Q, Luo J L. A unifying Ziegler-nichols tuning method based on active disturbance rejection. International Journal of Robust and Nonlinear Control, 2022, 32(18): 9525−9541 doi: 10.1002/rnc.5848
  • 加载中
计量
  • 文章访问数:  23
  • HTML全文浏览量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-20
  • 录用日期:  2025-09-06
  • 网络出版日期:  2025-10-10

目录

    /

    返回文章
    返回