2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于条件扩散模型的卫星遥测数据缺失值插补方法

庞昭辰 刘明 张立宪 曹喜滨 段广仁

庞昭辰, 刘明, 张立宪, 曹喜滨, 段广仁. 基于条件扩散模型的卫星遥测数据缺失值插补方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250244
引用本文: 庞昭辰, 刘明, 张立宪, 曹喜滨, 段广仁. 基于条件扩散模型的卫星遥测数据缺失值插补方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250244
Pang Zhao-Chen, Liu Ming, Zhang Li-Xian, Cao Xi-Bin, Duan Guang-Ren. Conditional diffusion model-based imputation method for missing satellite telemetry data. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250244
Citation: Pang Zhao-Chen, Liu Ming, Zhang Li-Xian, Cao Xi-Bin, Duan Guang-Ren. Conditional diffusion model-based imputation method for missing satellite telemetry data. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250244

基于条件扩散模型的卫星遥测数据缺失值插补方法

doi: 10.16383/j.aas.c250244 cstr: 32138.14.j.aas.c250244
基金项目: 国家自然科学基金 (62225305, 62188101, 62273116), 思源人工智能科学与技术协同创新联盟基金 (HTKJ2023SY502003), 微小型航天器快速设计与智能集群全国重点实验室资助
详细信息
    作者简介:

    庞昭辰:哈尔滨工业大学航天学院博士研究生. 主要研究方向为航天器健康管理和故障诊断. E-mail: 24b918077@stu.hit.edu.cn

    刘明:哈尔滨工业大学航天学院教授. 主要研究方向为基于人工智能技术的航天器故障诊断、健康管理, 以及大规模智能星群的设计与优化. 本文通信作者. E-mail: mingliu23@hit.edu.cn

    张立宪:哈尔滨工业大学航天学院教授. 主要研究方向为智能决策与控制, 航天器自主控制. E-mail: lixianzhang@hit.edu.cn

    曹喜滨:中国工程院院士, 哈尔滨工业大学航天学院教授. 主要研究方向为小卫星基础理论、创新技术与工程应用研究. E-mail: xbcao@hit.edu.cn

    段广仁:中国科学院院士, 哈尔滨工业大学航天学院教授. 主要研究方向为控制系统的参数化设计, 鲁棒控制, 广义系统, 航天器制导与控制. E-mail: g.r.duan@hit.edu.cn

Conditional Diffusion Model-based Imputation Method for Missing Satellite Telemetry Data

Funds: Supported by the National Natural Science Foundation of China(62225305, 62188101, 62273116), SiYuan Collaborative Innovation Alliance of Artificial Intelligence Science and Technology(HTKJ2023SY502003), and State Key Laboratory of Micro-Spacecraft Rapid Design and Intelligent Cluster
More Information
    Author Bio:

    PANG Zhao-Chen Ph.D. candidate in the School of Astronautics, Harbin Institute of Technology. His main research interest is spacecraft health management and fault diagnosis

    LIU Ming Professor at the School of Astronautics, Harbin Institute of Technology. His research interest covers AI-enabled spacecraft fault diagnosis and health management, and the design and optimization of large-scale intelligent satellite constellations. Corresponding author of this paper

    ZHANG Li-Xian Professor at the School of Astronautics, Harbin Institute of Technology. His research interest covers intelligent decision-making and control, and autonomous spacecraft control

    CAO Xi-Bin Academician of Chinese Academy of Engineering, professor at the School of Astronautics, Harbin Institute of Technology. His research interest covers fundamental theory, innovative technologies, and engineering applications of small satellites

    DUAN Guang-Ren Academician of the Chinese Academy of Sciences, professor at the School of Astronautics, Harbin Institute of Technology. His research interest covers parametric design of control systems, robust control, descriptor systems, spacecraft guidance and control

  • 摘要: 卫星遥测时间序列数据在遥感监测、导航定位等领域具有重要应用价值, 同时也能有效监控卫星的健康状态. 然而, 这些数据常常因传感器故障、数据传输错误等复杂因素出现缺失, 严重影响数据的完整性和可用性, 甚至可能导致决策失误. 对此, 提出基于多变量条件扩散模型的卫星时间序列补全方法, 旨在提高卫星遥测数据缺失值插补的准确性. 首先, 通过引入条件扩散方法, 将观测到的卫星数据作为条件输入, 通过建模缺失值的后验分布来生成数据, 并在生成过程中对该残缺样本进行初步的线性插补, 从而提高模型的稳定性. 其次, 设计由时间注意力层和门控激活单元组成的残差模块作为主干预测网络, 对多维遥测数据中的时间依赖关系进行充分捕捉, 实现对缺失数据的精准重构. 最后, 在某通讯卫星的动量轮遥测数据集以及公开的时间序列数据集上进行广泛实验. 实验结果表明, 所提方法在不同缺失率下均表现出良好的性能和泛化能力, 与现有方法相比, 展现出更高的准确性和稳定性.
  • 图  1  MCDM采样过程示意图

    Fig.  1  Schematic diagram of MCDM's sampling process

    图  2  噪声预测网络结构图

    Fig.  2  Architecture diagram of noise prediction network

    图  3  时间序列数据缺失模式分类示意图

    Fig.  3  Schematic diagram of time-series data missingness pattern classification

    图  4  MCDM和Diffusion-TS模型在不同缺失率下的补全结果(MAE)折线图

    Fig.  4  The line chart of MCDM and Diffusion-TS models' completion results (MAE) under different missing rates

    图  5  对比实验可视化结果图

    Fig.  5  Visualization results of the comparative experiment

    图  6  测试集30%缺失率下, MCDM与Diffusion-TS的插补结果绝对百分比误差频数分布直方图

    Fig.  6  The histogram of the frequency distribution of imputation results for models MCDM and Diffusion-TS at different absolute percentage errors in the test set with 30% missing rate

    表  1  动量轮数据集

    Table  1  Momentum wheels dataset

    序号 具体信息 $ \dfrac{均值}{标准差}$
    1 主份壳温 $ \dfrac{15.81}{3.55}$
    2 备份壳温 $ \dfrac{15.80}{3.47}$
    3 马达电压 $ \dfrac{26.96}{1.20}$
    4 马达电流 $ \dfrac{0.23}{0.07}$
    5 转速(AOCE) $ \dfrac{4836.45}{113.49}$
    6 转速 $ \dfrac{4836.71}{125.53}$
    7 力矩电压 $ \dfrac{0.22}{0.50}$
    下载: 导出CSV

    表  2  数据集A与数据集B具体细节

    Table  2  Detailed information of Dataset A and B

    数据集A 数据集B
    训练样本集 400 8000
    验证和测试样本集 100 2000
    总计样本集 500 10000
    单个样本序列长度 64 100
    样本特征维度 7 14
    下载: 导出CSV

    表  3  MCDM和Diffusion-TS在不同缺失率下的实验结果对比(MAE)

    Table  3  Experimental results comparison of MCDM and Diffusion-TS under different missing rates (MAE)

    缺失率(%) 10 20 30 40 50
    Diff-TS[34] 1.19 1.31 1.37 1.46 1.66
    MCDM 0.57 0.66 0.68 0.73 0.80
    下载: 导出CSV

    表  4  在数据集B (MuJoCo)中, 不同缺失率下的插补结果均方误差(MSE), 所有结果均乘以1e-3

    Table  4  In dataset B (MuJoCo), the MSE of imputation results under different missing rates, with all results multiplied by 1e-3

    缺失率(%) 70 80 90
    RNN GRU-D[31] 11.34 14.21 19.68
    ODE-RNN[30] 9.86 12.09 16.47
    Latent-ODE[30] 3.00 2.95 3.60
    NRTSI[32] 0.63 1.22 4.06
    SSSD[33] 0.59 1.00 1.90
    MCDM 0.60 0.72 0.93
    下载: 导出CSV
  • [1] 袁利, 王淑一. 航天器控制系统智能健康管理技术发展综述. 航空学报, 2021, 42(4): 122-136

    Yuan Li, Wang Shu-Yi. A review on development of intelligent health management technology for space-craft control systems. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 525044-525044
    [2] YAIRI T, TAKEISHI N, ODA T, Nakajima Y, Nishimura N, Takata N. A data-driven health monitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1384−1401 doi: 10.1109/TAES.2017.2671247
    [3] 刘切, 李嘉玺, 王泽煜, 陈小龙. 基于遥测数据特征预测的轻量化航天器异常检测. 宇航学报, 2025, 46(2): 232−243

    Liu Qie, Li Jia-Xi, Wang Ze-Yu, Chen Xiao-Long. Lightweight spacecraft anomaly detection based on telemetry data feature prediction. Journal of Astronautics, 2025, 46(2): 232−243
    [4] 詹兆康, 胡旭光, 赵浩然, 张思琪, 张峻凯, 马大中. 基于多变量时空融合网络的风机数据缺失值插补研究. 自动化学报, 2024, 50(6): 1171−1184

    Zhan Zhao-Kang, Hu Xu-Guang, Zhao Hao-Ran, Zhang Si-Qi, Zhang Jun-Kai, Ma Da-Zhong. Study of missingvalue imputation in wind turbine data based on multivariate spatiotemporal integration network. Acta Automatica Sinica, 2024, 50(6): 1171−1184
    [5] 许美玲, 邢通, 韩敏. 基于时空Kriging方法的时空数据插值研究. 自动化学报, 2020, 46(8): 1681−1688

    Xu Mei-Ling, Xing Tong, Han Min. Spatial-temporal data interpolation based on spatial-temporal Kriging method. Acta Automatica Sinica, 2020, 46(8): 1681−1688
    [6] Wu H, Xu J, Wang J, Long M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. In: Proceedings of Advances in neural information processing systems, Virtual Event: Curran Associates, 2021. 34: 22419-22430
    [7] Zhou H, Zhang S, Peng J, Zhang S, Li J, Xiong H, et al. Informer: Beyond efficient Transformer for long sequence time-series forecasting. In: Proceedings of the AAAI conference on artificial intelligence. Virtual Event: AAAI Press, 2021. 35(12): 11106-11115
    [8] Box G E P, Jenkins G M, Reinsel G C, Ljung G M. Time Series Analysis: Forecasting and Control. Hoboken: John Wiley & Sons, 2015.
    [9] 马友, 贾树泽, 赵现纲, 冯小虎, 范存群, 朱爱军. 基于张量分解的卫星遥测缺失数据预测算法. 电子与信息学报, 2020, 42(2): 403−409 doi: 10.11999/JEIT180728

    Ma You, Jia Shu-Ze, Zhao Xian-Gang, Feng Xiao-Hu, Fan Cun-Qun, Zhu Ai-Jun. Missing telemetry data prediction algorithm via tensor factorization. Journal of Electronics & Information Technology, 2020, 42(2): 403−409 doi: 10.11999/JEIT180728
    [10] 蒋珂, 蒋朝辉, 谢永芳, 潘冬, 桂卫华. 基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法. 自动化学报, 2023, 49(5): 949−963

    Jiang Ke, Jiang Zhao-Hui, Xie Yong-Fang, Pan Dong, Gui Wei-Hua. Online prediction method for silicon content of molten iron in blast furnace based on dynamic attention deep transfer network. Acta Automatica Sinica, 2023, 49(5): 949−963
    [11] 刘雨蒙, 郑旭, 田玲, 王宏安. 基于时序图推理的设备剩余使用寿命预测. 自动化学报, 2024, 50(1): 76−88

    Liu Yu-Meng, Zheng Xu, Tian Ling, Wang Hong-An. Remaining useful life estimation of facilities based on reasoning over temporal graphs. Acta Automatica Sinica, 2024, 50(1): 76−88
    [12] Li T, Baireddy S, Comer M, Delp E, Desai S R, Foster R H, et al. Multichannel anomaly detection for spacecraft time series using MAP estimation. IEEE Transactions on Aerospace Electronic Systems, 2024, 60(5): 5842−5855 doi: 10.1109/TAES.2024.3400943
    [13] Zhang J, Huang C, Chow M Y, Li X, Tian J, Luo H, et al. A data-model interactive remaining useful life prediction approach of lithium-ion batteries based on PF-BiGRU-TSAM. IEEE Transactions on Industrial Informatics, 2023, 20(2): 1144−1154
    [14] Hundman K, Constantinou V, Laporte C, Colwell I, Soderstrom T. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, UK: ACM, 2018. 387-395
    [15] Lin L, Wu J, Fu S, Zhang S, Tong C, Zu L. Channel attention & temporal attention based temporal convolutional network: A dual attention framework for remaining useful life prediction of the aircraft engines. Advanced Engineering Informatics, 2024, 60: Article No. 102372 doi: 10.1016/j.aei.2024.102372
    [16] Ahmadzadeh F, Lundberg J. Remaining useful life estimation: Review. International Journal of System Assurance Engineering and Management, 2014, 5(4): 461−474
    [17] 许凯凯, 张锐. 基于SE-TCN的一维低采样卫星帆板温度遥测数据插补方法. 中国科学院大学学报, 2023, 40(6): 810−820

    Xu Kai-Kai, Zhang Rui. An interpolation method for temperature telemetry data of one-dimensional low-sampling satellite panel based on SE-TCN. Journal of University of Chinese Academy of Sciences, 2023, 40(6): 810−820
    [18] 张博玮, 郑建飞, 胡昌华, 裴洪, 董青. 基于流模型的缺失数据生成方法在剩余寿命预测中的应用. 自动化学报, 2023, 49(1): 185−196

    Zhang Bo-Wei, Zheng Jian-Fei, Hu Chang-Hua, Pei Hong, Dong Qing. Missing data generation method based on flow model and its application in remaining life prediction. Acta Automatica Sinica, 2023, 49(1): 185−196
    [19] Li X, Tian Y, Ye P, Duan H, Wang F. A novel scenarios engineering methodology for foundation models in metaverse. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(4): 2148−2159
    [20] Li X, Duan H, Liu B, Wang X, Wang F. A novel framework to generate synthetic video for foreground detection in highway surveillance scenarios. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(6): 5958−5970 doi: 10.1109/TITS.2023.3253919
    [21] Yoon J, Jarrett D, Schaar M. Time-series generative adversarial networks. In: Proceedings of Advances in neural information processing systems, Vancouver, Canada: Curran Associates, 2019. 32
    [22] Qi M, Qin J, Wu Y, Yang Y. Imitative non-autoregressive modeling for trajectory forecasting and imputation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual Event: IEEE Computer Society, 2020. 12736-12745
    [23] Kingma D P, Welling M. Auto-encoding variational bayes. arXiv preprint arXiv: 1312. 6114, 2013.
    [24] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of Advances in neural information processing systems, Montreal, Canada: Curran Associates, 2014. 27
    [25] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. In: Proceedings of Advances in neural information processing systems, Vancouver, Canada: Curran Associates, 2020. 33: 6840-6851
    [26] Yang Y, Jin M, Wen H, Zhang C, Liang Y, Ma L, et al. A survey on diffusion models for time series and spatio-temporal data. arXiv preprint arXiv: 2404. 18886, 2024.
    [27] 赵浩天, 邱实, 刘明, 盖琦超, 曹喜滨. 基于全生命周期数据驱动的通讯卫星行波管退化评估方法. 航空学报, 2025, 46(9): 331−376

    Zhao Hao-Tian, Qiu Shi, Liu Ming, Gai Qi-Chao, Cao Xi-Bin. Degradation evaluation method for communication satellite traveling wave tubes based on full life cycle data. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 331−376
    [28] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, et al. Attention is all you need. In: Proceedings of Advances in neural information processing systems, Long Beach, USA: Curran Associates, 2017. 30
    [29] Kong Z, Ping W, Huang J, Zhao K, Catanzaro B. Diffwave: A versatile diffusion model for audio synthesis. arXiv preprint arXiv: 2009. 09761, 2020.
    [30] Rubanova Y, Chen R T Q, Duvenaud D K. Latent ordinary differential equations for irregularly-sampled time series. In: Proceedings of Advances in neural information processing systems, Vancouver, Canada: Curran Associates, 2019. 32
    [31] Che Z, Purushotham S, Cho K, Sontag D, Liu Y. Recurrent neural networks for multivariate time series with missing values. Scientific reports, 2018, 8(1): 6085 doi: 10.1038/s41598-018-24271-9
    [32] Shan S, Li Y, Oliva J B. Nrtsi: Non-recurrent time series imputation. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island, Greece: IEEE, 2023. 1-5
    [33] Alcaraz J M L, Strodthoff N. Diffusion-based time series imputation and forecasting with structured state space models. arXiv preprint arXiv: 2208. 09399, 2022.
    [34] Yuan X, Qiao Y. Diffusion-ts: Interpretable diffusion for general time series generation. arXiv preprint arXiv: 2403. 01742, 2024.
  • 加载中
计量
  • 文章访问数:  17
  • HTML全文浏览量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-02
  • 录用日期:  2025-08-09
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回