2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机森林学习残差的重载卡车模型预测控制器设计

赵康 李小凡 薛建儒

赵康, 李小凡, 薛建儒. 基于随机森林学习残差的重载卡车模型预测控制器设计. 自动化学报, 2025, 51(11): 1000−1013 doi: 10.16383/j.aas.c250207
引用本文: 赵康, 李小凡, 薛建儒. 基于随机森林学习残差的重载卡车模型预测控制器设计. 自动化学报, 2025, 51(11): 1000−1013 doi: 10.16383/j.aas.c250207
Zhao Kang, Li Xiao-Fan, Xue Jian-Ru. Model predictive controller design for heavy-duty trucks based on random forest residual learning. Acta Automatica Sinica, 2025, 51(11): 1000−1013 doi: 10.16383/j.aas.c250207
Citation: Zhao Kang, Li Xiao-Fan, Xue Jian-Ru. Model predictive controller design for heavy-duty trucks based on random forest residual learning. Acta Automatica Sinica, 2025, 51(11): 1000−1013 doi: 10.16383/j.aas.c250207

基于随机森林学习残差的重载卡车模型预测控制器设计

doi: 10.16383/j.aas.c250207 cstr: 32138.14.j.aas.c250207
基金项目: 国家自然科学基金(62036008, 62273057), 国家重点研发计划(2024YFE0210700)资助
详细信息
    作者简介:

    赵康:西安交通大学人工智能与机器人研究所博士研究生. 主要研究方向为无人车运动控制和基于学习的模型预测控制. E-mail: zhaokang@stu.xjtu.edu.cn

    李小凡:西安交通大学人工智能与机器人研究所博士研究生. 主要研究方向为自动驾驶车辆运动控制和强化学习. E-mail: lixiaofan23@stu.xjtu.edu.cn

    薛建儒:西安交通大学人工智能与机器人研究所教授. 主要研究方向为计算机视觉, 模式识别与机器学习, 自动驾驶和混合增强智能. 本文通信作者. E-mail: jrxue@mail.xjtu.edu.cn

Model Predictive Controller Design for Heavy-duty Trucks Based on Random Forest Residual Learning

Funds: Supported by National Natural Science Foundation of China (62036008, 62273057), and National Key Research and Development Program of China (2024YFE0210700)
More Information
    Author Bio:

    ZHAO Kang Ph.D. candidate at the Institute of Artificial Intelligence and Robotics, Xi′an Jiaotong University. His research interest covers motion control for autonomous vehicles and learning-based model predictive control

    LI Xiao-Fan Ph.D. candidate at the Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University. Her research interest covers motion control and reinforcement learning for autonomous driving vehicles

    XUE Jian-Ru Professor at the Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University. His research interest covers computer vision, pattern recognition and machine learning, autonomous driving, and hybrid-augmented intelligence. Corresponding author of this paper

  • 摘要: 近年来, 模型预测控制(MPC)在自动驾驶领域大量应用, 但依然面临车辆动力学非线性建模、实时滚动优化等困难. 基于数据驱动建立车辆动力学模型的MPC通过收集系统的输入输出数据, 直接学习动力学模型, 但依然需要额外处理环节解决实时滚动优化问题. 为此, 提出一种基于随机森林学习车辆动力学模型的方法. 先将车辆动力学模型分解为标称模型和残差模型, 然后利用两层随机森林学习残差模型. 上层用于切换不同线性模型, 下层拟合叶子节点的线性模型. 由于标称模型和残差模型均为线性模型, 滚动优化可直接使用二次规划求解器实时求解. 同时, 基于随机森林的残差模型使用多帧历史状态作为特征输入, 学习得到的残差模型保留动力学系统动态响应的延迟特性, 因此可有效消解延迟影响. 仿真测试和实车实验结果表明, 提出的MPC的跟踪精度和实时性均优于标称MPC和基于高斯过程的MPC, 并对车辆执行机构延迟具有优良的适应性.
    1)  11[8]的复现代码https://github.com/lucasrm25/Gaussian-Process-based-Model-Predictive-Control
  • 图  1  基于随机森林线性学习的模型预测控制系统框图

    Fig.  1  Block diagram of model predictive control system based on random forest linear learning

    图  2  半拖挂卡车单轨模型和误差示意图

    Fig.  2  Schematic diagram of single-track model and error for semi-trailer truck

    图  3  回归树和叶子节点上线性回归

    Fig.  3  Regression tree and linear regression on each leaf

    图  4  乘用车误差状态模型示意图

    Fig.  4  Schematic diagram of passenger vehicle model with error states

    图  5  越野路路径跟踪

    Fig.  5  Off-road path tracking

    图  6  转角延迟曲线

    Fig.  6  Steering angle curve with delay

    图  7  低延迟各模型跟踪误差

    Fig.  7  Tracking error of different models with low delay

    图  8  高延迟各模型跟踪误差

    Fig.  8  Tracking error of different models with high delay

    图  9  高延迟各模型跟踪轨迹

    Fig.  9  Tracking trajectories of different models with high delay

    图  10  实验用半拖挂卡车

    Fig.  10  Experimental semi-trailer truck

    图  11  U型弯轨迹跟踪曲线

    Fig.  11  Trajectory tracking of U-turn

    图  12  不同延迟模型MPC跟踪横向误差

    Fig.  12  Lateral tracking errors of MPC with different delay models

    表  1  半拖挂卡车模型参数表

    Table  1  Model parameter table of semi-trailer trucks

    模型参数含义仿真数值实车数值
    $ m_1 $、$ m_2 $ (kg)牵引车、挂车质量71801000068708000
    $ I_{z1} $、$ I_{z2} $ (N$ \cdot $m$ ^2 $)牵引车、挂车转动惯量2186314167624800113341
    $ a_1 $、$ b_1 $、$ c_1 $ (m)牵引车质心到前轮、后轮和铰接点的距离1.675、1.815、0.61.8、2.0、0.6
    $ a_2 $、$ b_2 $ (m)挂车质心到铰接点和后轮的距离4.426、3.1024.426、3.102
    下载: 导出CSV

    表  2  不同学习模型的计算复杂度对比表

    Table  2  Computational complexity comparison table of different learning models

    项目 GP Sparse GP RT RF
    训练时间 $ {\rm{O}}(n^3) $ $ {\rm{O}}(s^2n) $ $ {\rm{O}}(nFD) $ $ {\rm{O}}(T\times \tau\log_{}{\tau}) $
    训练空间 $ {\rm{O}}(n^2) $ $ {\rm{O}}(sn) $ $ - $ $ - $
    均值预测 $ {\rm{O}}(n) $ $ {\rm{O}}(s) $ $ {\rm{O}}(FD) $ $ {\rm{O}}(T\times FD) $
    方差预测 $ {\rm{O}}(n^2) $ $ {\rm{O}}(s^2) $ $ - $ $ - $
      表中$ n $为训练数据集的样本数量, $ s $是诱导数据量, GP和稀疏GP的复杂度数据来自文献[20, 36]. 对RT和RF, $ F $表示特征数, $ D $表示树深度, $ T $表示森林中树木的数目, $ \tau=nFD $.
    下载: 导出CSV

    表  3  不同回归方法在测试数据集上的拟合误差对比表

    Table  3  Fitting error comparison table of different regression methods on test datasets

    项目数据集RTRFRTLRFL
    RMSE (‰)训练集1.601.520.160.15
    测试集1.571.480.150.14
    ME (cm)训练集2.722.800.330.31
    测试集3.192.810.340.32
    下载: 导出CSV

    表  4  不同残差模型横向跟踪误差性能对比表

    Table  4  Performance comparison table of lateral tracking error among different residual models

    ControllerMAERMSEMEPE (%)
    MPC0.08930.11270.4399
    RTL-MPC0.04920.06450.423244.8
    RFL-MPC0.04330.05790.432951.5
    NMPC[8]0.05160.08820.9300
    GP-NMPC[8]0.04770.07960.5173
    下载: 导出CSV

    表  5  不同残差模型计算耗时对比表

    时间(s)MPCRTL-MPCRFL-MPCNMPCGP-NMPC
    平均耗时0.0590.1840.6952.30815.434
    最大耗时0.8270.8861.6414.13721.692
    优化耗时0.0120.0270.0121.67614.274
    下载: 导出CSV

    表  6  半拖挂卡车轨迹跟踪实验参数设置

    Table  6  Parameter settings for trajectory tracking experiments of semi-trailer trucks

    控制器参数$ N_p $$ N_c $$ T_s $$ q_c $$ q_l $$ q_{\phi} $$ q_v $$ R_u $
    仿真实验60600.021010141
    实车实验60600.021010141
    下载: 导出CSV

    表  7  高延迟各模型跟踪性能对比

    Table  7  Performance comparison of tracking error of different models with high delay

    模型MAERMSEMEPE (%)
    标称模型0.28350.38131.412-
    一阶惯性模型[24]0.01720.03170.175691.6
    帕德近似[23]0.03070.05230.237786.3
    RFL0.01330.02260.129294.1
    下载: 导出CSV
  • [1] Camacho E F, Alba C B. Model Predictive Control. Berlin: Springer Science & Business Media, 2013.
    [2] Hewing L, Wabersich K P, Menner M, Zeilinger M N. Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems, 2020, 3(1): 269−296 doi: 10.1146/annurev-control-090419-075625
    [3] Vicente B A H, James S S, Anderson S R. Linear system identification versus physical modeling of lateral-longitudinal vehicle dynamics. IEEE Transactions on Control Systems Technology, 2020, 29(3): 1380−1387
    [4] Spielberg N A, Brown M, Kapania N R, Kegelman J C, Gerdes J C. Neural network vehicle models for high-performance automated driving. Science Robotics, 2019, 4(28): Article No. eaaw1975 doi: 10.1126/scirobotics.aaw1975
    [5] Da Lio M, Bortoluzzi D, Rosati Papini G P. Modelling longitudinal vehicle dynamics with neural networks. Vehicle System Dynamics, 2020, 58(11): 1675−1693 doi: 10.1080/00423114.2019.1638947
    [6] Xu J X, Luo Q, Xu K C, Xiao X Q, Yu S Y, Hu J T, et al. An automated learning-based procedure for large-scale vehicle dynamics modeling on Baidu Apollo platform. In: Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau: IEEE, 2019. 5049-5056
    [7] McKinnon C D, Schoellig A P. Learning probabilistic models for safe predictive control in unknown environments. In: Proceedings of the 2019 European Control Conference (ECC). Naples: IEEE, 2019. 2506-2512
    [8] Kabzan J, Hewing L, Liniger A, Zeilinger M N. Learning-based model predictive control for autonomous racing. IEEE Robotics and Automation Letters, 2019, 4(4): 3363−3370 doi: 10.1109/LRA.2019.2926677
    [9] Hewing L, Liniger A, Zeilinger M N. Cautious NMPC with Gaussian process dynamics for autonomous miniature race cars. In: Proceedings of the 2018 European Control Conference (ECC). Limassol: IEEE, 2018. 1341-1348
    [10] 韩陌, 何洪文, 石曼, 刘伟, 曹剑飞, 吴京达. 基于学习的无人驾驶车辆模型预测路径跟踪控制研究. 汽车工程, 2024, 46(7): 1197−1207

    Han Mo, He Hong-Wen, Shi Man, Liu Wei, Cao Jian-Fei, Wu Jing-Da. Research on learning-based model predictive path tracking control for autonomous vehicles. Automotive Engineering, 2024, 46(7): 1197−1207
    [11] Ostafew C J, Schoellig A P, Barfoot T D. Learning-based nonlinear model predictive control to improve vision-based mobile robot path tracking. Journal of Field Robotics, 2016, 33(1): 133−152 doi: 10.1002/rob.21587
    [12] Li F, Li H P, Wu C. Gaussian process based learning model predictive control with application to USV. IEEE Transactions on Industrial Electronics, 2024, 71(12): 16388−16397 doi: 10.1109/TIE.2024.3384617
    [13] Panetsos F, Karras G C, Kyriakopoulos K J. GP-based NMPC for aerial transportation of suspended loads. IEEE Robotics and Automation Letters, 2024, 10(1): 524−531
    [14] 方培俊, 蔡英凤, 陈龙, 廉玉波, 王海, 钟益林, 等. 基于车辆动力学混合模型的智能汽车轨迹跟踪控制方法. 汽车工程, 2022, 44(10): 1469−1483

    Fang Pei-Jun, Cai Ying-Feng, Chen Long, Lian Yu-Bo, Wang Hai, Zhong Yi-Lin, et al. Trajectory tracking control method based on vehicle dynamics hybrid model for intelligent vehicle. Automotive Engineering, 2022, 44(10): 1469−1483
    [15] Albeaik S, Wu T, Vurimi G, Chou F C, Lu X Y, Bayen A M. Longitudinal deep truck: Deep longitudinal model with application to sim2real deep reinforcement learning for heavy-duty truck control in the field. Journal of Field Robotics, 2023, 40(2): 306−329 doi: 10.1002/rob.22131
    [16] Rajamani R. Vehicle Dynamics and Control. New York: Springer Science & Business Media, 2011.
    [17] Quionero-Candela J, Rasmussen C E. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 2005, 6: 1939−1959
    [18] Lázaro-Gredilla M, Quionero-Candela J, Rasmussen C E, Figueiras-Vidal A R. Sparse spectrum Gaussian process regression. Journal of Machine Learning Research, 2010, 11(9): 1865−1881
    [19] Gómez-Verdejo V, Parrado-Hernández E, Martínez-Ramón M. Adaptive sparse Gaussian process. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 16383−16395 doi: 10.1109/TNNLS.2023.3294089
    [20] Amer A, Mehndiratta M, Brodskiy Y, Kayacan E. Empowering autonomous underwater vehicles using learning-based model predictive control with dynamic forgetting Gaussian processes. IEEE Transactions on Control Systems Technology, 2025, 33(5): 1913−1920 doi: 10.1109/TCST.2025.3539218
    [21] Chrosniak J, Ning J, Behl M. Deep dynamics: Vehicle dynamics modeling with a physics-constrained neural network for autonomous racing. IEEE Robotics and Automation Letters, 2024, 9(6): 5292−5297 doi: 10.1109/LRA.2024.3388847
    [22] Miao J Y, Yan R J, Zhang B W, Wen T P, Li J Q, Fu Z, et al. Residual learning towards high-fidelity vehicle dynamics modeling with Transformer. IEEE Robotics and Automation Letters, 2025, 10(7): 7404−7411 doi: 10.1109/LRA.2025.3575637
    [23] Smarra F, Jain A, de Rubeis T, Ambrosini D, D′Innocenzo A, Mangharam R. Data-driven model predictive control using random forests for building energy optimization and climate control. Applied Energy, 2018, 226: 1252−1272 doi: 10.1016/j.apenergy.2018.02.126
    [24] Xu S, Peng H, Tang Y. Preview path tracking control with delay compensation for autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(5): 3130−3141
    [25] Xing H, Ploeg J, Nijmeijer H. Padé approximation of delays in cooperative ACC based on string stability requirements. IEEE Transactions on Intelligent Vehicles, 2016, 1(3): 277−286 doi: 10.1109/TIV.2017.2662482
    [26] Zhang L, Yin X, Wang Z, Sun F, Ding X. Hierarchical hybrid steering control for four-wheel-steering vehicles considering system delays. IEEE Transactions on Vehicular Technology, 2024, 73(2): 1234−1245
    [27] Xu X, Liu Z Y, Wang F, Xie J, Su P W. Trajectory tracking control based on the dual-motor autonomous steering system with time-varying network-induced time delay. Control Engineering Practice, 2021, 116: Article No. 104915 doi: 10.1016/j.conengprac.2021.104915
    [28] Gong Y, Zhu W X. Modeling and robust $ {H_ {\infty}} $ control synthesis of the CAV-HDV heterogeneous traffic system with different car-following modes. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(10): 12980−12998 doi: 10.1109/TITS.2024.3431591
    [29] Fang R, Wang Z, Liang J, Yin G, Liu C, Liu H, et al. A vision-based robust ${H_ {\infty}}$ gain scheduling longitudinal and lateral following controller for autonomous vehicles on urban curved roads. IEEE Transactions on Intelligent Vehicles, 2024, 9(11): 7498−7513 doi: 10.1109/TIV.2024.3398739
    [30] Zhang B, Wang C, Zhao W, Lian Y, Zhang H. The design and stable delay range analysis of TD-H2/ ${ H_ {\infty}} $ controller for SbW systems. IEEE Transactions on Transportation Electrification, 2024, 11(1): 404−15
    [31] Vallinder G, Mårtensson J, Lima P F, Bhat S. Model predictive control for autonomous driving: Comparing kinematic and dynamic models of tractor-trailer systems. In: Proceedings of the 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC). Edmonton: IEEE, 2024. 3154−3159
    [32] Liniger A, Domahidi A, Morari M. Optimization-based autonomous racing of 1: 43 scale RC car. Optimal Control Applications and Methods, 2015, 36(5): 628−647 doi: 10.1002/oca.2123
    [33] Stellato B, Banjac G, Goulart P, Bemporad A, Boyd S. OSQP: An operator splitting solver for quadratic programs. Mathematical Programming Computation, 2020, 12(4): 637−672 doi: 10.1007/s12532-020-00179-2
    [34] Ferreau H J, Kirches C, Potschka A, Bock H G, Diehl M. qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation, 2014, 6(4): 327−363 doi: 10.1007/s12532-014-0071-1
    [35] Frison G, Diehl M. HPIPM: A high-performance quadratic programming framework for model predictive control. IFAC-PapersOnLine, 2020, 53(2): 6563−6569 doi: 10.1016/j.ifacol.2020.12.073
    [36] Liu H T, Ong Y S, Shen X B, Cai J F. When Gaussian process meets big data: A review of scalable GPs. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4405−4423 doi: 10.1109/TNNLS.2019.2957109
    [37] Zhao K, Xue J R, Meng X N, Li G X, Wu M S. Learning residual model of model predictive control via random forests for autonomous driving. In: Proceedings of the 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC). Edmonton: IEEE, 2024. 755−761
  • 加载中
计量
  • 文章访问数:  9
  • HTML全文浏览量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-08
  • 录用日期:  2025-08-27
  • 网络出版日期:  2025-10-14

目录

    /

    返回文章
    返回