[1]
|
Bao W M, Wang X W. Develop highly reliable and low-cost technology for access to space, embrace the new space economy era. Aerospace China, 2019, 20(4): 23−30
|
[2]
|
吴燕生. 中国航天运输系统的发展与未来. 导弹与航天运载技术, 2007(5): 1−4Wu Yan-Sheng. Development and future of space transportation system of China. Missiles and Space Vehicles, 2007(5): 1−4
|
[3]
|
吴树范, 王伟, 温济帆, 吴岳东. 低轨互联网星座发展研究. 北京航空航天大学学报, 2024, 50(1): 1−11Wu Shu-Fan, Wang Wei, Wen Ji-Fan, Wu Yue-Dong. Review on development of LEO Internet constellation. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 1−11
|
[4]
|
崔乃刚, 王平, 郭继峰, 程兴. 空间在轨服务技术发展综述. 宇航学报, 2007, 28(4): 805−811Cui Nai-Gang, Wang Ping, Guo Ji-Feng, Cheng Xing. A review of on-orbit servicing. Journal of Astronautics, 2007, 28(4): 805−811
|
[5]
|
龙乐豪. 关于中国载人登月工程若干问题的思考. 导弹与航天运载技术, 2010(6): 1−5Long Le-Hao. On issues of China manned lunar exploration. Missiles and Space Vehicles, 2010(6): 1−5
|
[6]
|
Grantz A. X-37B orbital test vehicle and derivatives. In: Proceedings of the AIAA Space 2011 Conference & Exposition. Long Beach, USA: AIAA, 2011. 2942-2955
|
[7]
|
郑卓, 禹春梅, 程晓明, 张惠平, 彭汉章, 柳嘉润. 运载火箭智能控制的能力特征与关键技术. 上海航天(中英文), 2022, 39(4): 52−57Zheng Zhuo, Yu Chun-Mei, Cheng Xiao-Ming, Zhang Hui-Ping, Peng Han-Zhang, Liu Jia-Run. Capability characteristics and key technologies for the intelligent control of launch vehicles. Aerospace Shanghai (Chinese & English), 2022, 39(4): 52−57
|
[8]
|
宋征宇, 巩庆海, 王聪, 何勇, 施国兴. 长征运载火箭上升段的自主制导方法及其研究进展. 中国科学: 信息科学, 2021, 51(10): 1587−1608 doi: 10.1360/SSI-2021-0196Song Zheng-Yu, Gong Qing-Hai, Wang Cong, He Yong, Shi Guo-Xing. Review and progress of the autonomous guidance method for long march launch vehicle ascent flight. SCIENTIA SINICA Informationis, 2021, 51(10): 1587−1608 doi: 10.1360/SSI-2021-0196
|
[9]
|
宋征宇, 潘豪, 王聪, 巩庆海. 长征运载火箭飞行控制技术的发展. 宇航学报, 2020, 41(7): 868−879Song Zheng-Yu, Pan Hao, Wang Cong, Gong Qing-Hai. Development of flight control technology of long march launch vehicles. Journal of Astronautics, 2020, 41(7): 868−879
|
[10]
|
王小锭, 董晓琳, 高朝辉, 吴胜宝. 智慧火箭技术发展与智能等级分级设想. 中国航天, 2022(5): 22−28Wang Xiao-Ding, Dong Xiao-Lin, Gao Zhao-Hui, Wu Sheng-Bao. Technology development and intelligence level assumption for intelligent launch vehicles. Aerospace China, 2022(5): 22−28
|
[11]
|
包为民. 航天智能控制技术让运载火箭“会学习”. 航空学报, 2021, 42(11): Article No. 525055Bao Wei-Min. Space intelligent control technology enables launch vehicle to "self-learning". Acta Aeronautica et Astronautica Sinica, 2021, 42(11): Article No. 525055
|
[12]
|
包为民, 祁振强. 航班化航天运输系统中的控制问题. 宇航学报, 2023, 44(4): 607−611Bao Wei-Min, Qi Zhen-Qiang. Control problems of airline-flight-mode aerospace transportation system. Journal of Astronautics, 2023, 44(4): 607−611
|
[13]
|
梁小辉, 胡昌华, 周志杰, 王青. 基于自适应动态规划的运载火箭智能姿态容错控制. 航空学报, 2021, 42(4): Article No. 524915Liang Xiao-Hui, Hu Chang-Hua, Zhou Zhi-Jie, Wang Qing. ADP-based intelligent attitude fault-tolerant control for launch vehicles. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): Article No. 524915
|
[14]
|
马艳如, 石晓荣, 刘华华, 梁小辉, 王青. 运载火箭姿态系统自适应神经网络容错控制. 宇航学报, 2021, 42(10): 1237−1245Ma Yan-Ru, Shi Xiao-Rong, Liu Hua-Hua, Liang Xiao-Hui, Wang Qing. Adaptive neural network fault tolerant control of launch vehicle attitude system. Journal of Astronautics, 2021, 42(10): 1237−1245
|
[15]
|
张荣升, 袁晗, 王紫扬, 秦旭东. 大型液体运载火箭姿态控制参数智能设计方法. 宇航学报, 2023, 44(12): 1883−1893Zhang Rong-Sheng, Yuan Han, Wang Zi-Yang, Qin Xu-Dong. Intelligent attitude control parameter design method for large liquid launch vehicle. Journal of Astronautics, 2023, 44(12): 1883−1893
|
[16]
|
Zhou Y, Van Kampen E J, Chu Q P. Nonlinear adaptive flight control using incremental approximate dynamic programming and output feedback. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 489-496 (查阅网上资料, 不确定本条文献页码信息, 请核对)
|
[17]
|
谭述君, 何骁, 张立勇, 吴志刚. 运载火箭推力故障下基于智能决策的在线轨迹重规划方法. 宇航学报, 2021, 42(10): 1228−1236Tan Shu-Jun, He Xiao, Zhang Li-Yong, Wu Zhi-Gang. Online trajectory replanning method based on intelligent decision-making for launch vehicles under thrust drop failure. Journal of Astronautics, 2021, 42(10): 1228−1236
|
[18]
|
Song Z Y, Wang C, Gong Q H. Joint dynamic optimization of the target orbit and flight trajectory of a launch vehicle based on state-triggered indices. Acta Astronautica, 2020, 174: 82−93 doi: 10.1016/j.actaastro.2020.04.017
|
[19]
|
包为民. 可重复使用运载火箭技术发展综述. 航空学报, 2023, 44(23): Article No. 629555Bao Wei-Min. A review of reusable launch vehicle technology development. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): Article No. 629555
|
[20]
|
Marques A N, Wang Q Q, Marzouk Y. Data-driven integral boundary-layer modeling for airfoil performance prediction in laminar regime. AIAA Journal, 2018, 56(2): 482−496 doi: 10.2514/1.J055877
|
[21]
|
杜涛, 许晨舟, 王国辉, 宫宇昆, 何巍, 牟宇, 等. 人工智能气动特性预测技术在火箭子级落区控制项目的应用. 宇航学报, 2021, 42(1): 61−73Du Tao, Xu Chen-Zhou, Wang Guo-Hui, Gong Yu-Kun, He Wei, Mou Yu, et al. The application of aerodynamic coefficients prediction technique via artificial intelligence method to rocket first stage landing area control project. Journal of Astronautics, 2021, 42(1): 61−73
|
[22]
|
陈书钊, 楚龙飞, 杨秀梅, 蔡德淮. 状态预测神经网络控制应用于小型可回收火箭. 航空学报, 2019, 40(3): Article No. 322286Chen Shu-Zhao, Chu Long-Fei, Yang Xiu-Mei, Cai De-Huai. Application of state prediction neural network control algorithm in small reusable rocket. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): Article No. 322286
|
[23]
|
黄旭, 柳嘉润, 贾晨辉, 骆无意, 巩庆海, 冯明涛. 强化学习控制方法及在类火箭飞行器上的应用. 宇航学报, 2023, 44(5): 708−718Huang Xu, Liu Jia-Run, Jia Chen-Hui, Luo Wu-Yi, Gong Qing-Hai, Feng Ming-Tao. Reinforcement learning control and its application on rocket-like vehicle. Journal of Astronautics, 2023, 44(5): 708−718
|
[24]
|
包为民, 祁振强. 航天装备体系化仿真发展的思考. 系统仿真学报, 2024, 36(6): 1257−1272Bao Wei-Min, Qi Zhen-Qiang. Thinking of aerospace equipment systematization simulation technology development. Journal of System Simulation, 2024, 36(6): 1257−1272
|
[25]
|
王小军. 下一代航天运输系统发展思考. 导弹与航天运载技术(中英文), 2022(6): 1−7Wang Xiao-Jun. Reflections on the development of next generation space transportation system. Missiles and Space Vehicles, 2022(6): 1−7
|
[26]
|
Intel. Intel® products[Online], available: https://ark.intel.com/content/www/us/en/ark/products/12246\\1/intel-movidius-myriad-2-vision-processing-unit-4gb.html, September 12, 2025.
|
[27]
|
唐磊, 马钟, 李申, 王钟犀. 天基智能计算技术现状与发展趋势. 微电子学与计算机, 2022, 39(4): 1−8Tang Lei, Ma Zhong, Li Shen, Wang Zhong-Xi. The present situation and developing trends of space-based intelligent computing technology. Microelectronics & Computer, 2022, 39(4): 1−8
|
[28]
|
秦剑华. 航天器电源系统故障诊断与健康评价研究[博士学位论文], 南京航空航天大学, 中国, 2018Qin Jian-Hua. Research on Fault Diagnosis and Health Evaluation in Spacecraft Electrical Power System[Ph., D. dissertation], Nanjing University of Aeronautics and Astronautics, China, 2018
|
[29]
|
陶江. 基于视觉的空间碎片智能感知方法研究 [博士学位论文], 南京航空航天大学, 中国, 2023Tao Jiang. Research on Visual Based Space Debris Intelligent Perception Method [Ph., D. dissertation], Nanjing University of Aeronautics and Astronautics, China, 2023
|
[30]
|
王桂胜, 王叶群, 孙启禄, 任婷婷, 张玉婕. 智能无人系统“云脑”架构之初步思考. In: 第八届中国指挥控制大会论文集. 北京: 中国指挥与控制学会, 2020. 738-741Wang Gui-Sheng, Wang Ye-Qun, Sun Qi-Lu, Ren Ting-Ting, Zhang Yu-Jie. Preliminary thought for the “Cloud Brain” Architecture of Intelligent Unmanned System. In: Proceedings of the 8th China Command and Control Conference. Beijing: Chinese Command and Control Society, 2020. 738-741
|
[31]
|
Li Y J, Wang M, Hwang K, Li Z D, Ji T K. LEO satellite constellation for global-scale remote sensing with on-orbit cloud AI computing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 9369−9381 doi: 10.1109/JSTARS.2023.3316298
|
[32]
|
陈占胜, 朱维各. 异构巨型星座开放式敏捷架构设计. 上海航天(中英文), 2024, 41(3): 95−102Chen Zhan-Sheng, Zhu Wei-Ge. Open agile architecture design for heterogeneous mega constellations. Aerospace Shanghai (Chinese & English), 2024, 41(3): 95−102
|
[33]
|
季翔, 许长桥, 张宏科. 面向立体化异构网络的智融协同传输方法. 计算机研究与发展, 2024, 61(11): 2693−2705Ji Xiang, Xu Chang-Qiao, Zhang Hong-Ke. Smart integrated cooperative transmission method for stereoscopic heterogeneous networks. Journal of Computer Research and Development, 2024, 61(11): 2693−2705
|
[34]
|
Muelhaupt T J, Sorge M E, Morin J, Wilson R S. Space traffic management in the new space era. Journal of Space Safety Engineering, 2019, 6(2): 80−87 doi: 10.1016/j.jsse.2019.05.007
|
[35]
|
Long J, Zhang T. Pillars of space traffic management in the era of LEO mega-constellations: A global perspective. Advances in Space Research, 2024, 74(2): 800−816 doi: 10.1016/j.asr.2024.04.011
|
[36]
|
中国民用航空局. 中国民用航空局关于印发智慧民航建设路线图的通知[Online], available: https://www.gov.cn/xinwen/2022-01/21/5669771/files/f7402a57bcf349b0ae8d1224a0f35737.pdf, 2025年9月12日.Civil Aviation Administration of China. Notice from the civil aviation administration of China on issuing the roadmap for intelligent civil aviation construction[Online], available: https://www.gov.cn/xinwen/2022-01/21/5669771/files/f7402a57bcf349b0ae8d1224a0f35737.pdf, September 12, 2025.
|
[37]
|
闫家帅. 航天发射任务多约束调度建模及算法实现[硕士学位论文], 电子科技大学, 中国, 2014Yan Jia-Shuai. Multi-Constrained Space Launch Task Scheduling Modeling and Algorithm Implementation[Master dissertation], University of Electronic Science and Technology of China, China, 2014
|
[38]
|
淳静, 李阳, 杨俊. 基于粒子群算法的航天发射任务规划技术. 导弹与航天运载技术(中英文), 2024(6): 47−53Chun Jing, Li Yang, Yang Jun. Space launch mission planning technology based on particle swarm optimization. Missiles and Space Vehicles, 2024(6): 47−53
|
[39]
|
张志成, 崔展鹏, 陈默, 刘俊林, 唐小松. 智慧航天港——航天发射场未来演进趋势探讨. 中国航天, 2023(12): 7−13Zhang Zhi-Cheng, Cui Zhan-Peng, Chen Mo, Liu Jun-Lin, Tang Xiao-Song. Intelligent spaceports: Future evolution trends of space launch sites. Aerospace China, 2023(12): 7−13
|
[40]
|
席政. 人工智能在航天飞行任务规划中的应用研究. 航空学报, 2007, 28(4): 791−795Xi Zheng. Study on mission planning of spaceflight applying artificial intelligence. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 791−795
|
[41]
|
于连波, 曹品钊, 石亮, 连捷, 王东. 基于改进冲突搜索的多智能体路径规划算法. 航空学报, 2023, 44(S1): 727648Yu Lian-Bo, Cao Pin-Zhao, Shi Liang, Lian Jie, Wang Dong. An improved conflict-based search algorithm for multi-agent path planning. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727648
|
[42]
|
Izzo D, Simões L F, De Croon G C H E. An evolutionary robotics approach for the distributed control of satellite formations. Evolutionary Intelligence, 2014, 7(2): 107−118 doi: 10.1007/s12065-014-0111-9
|
[43]
|
Izzo D, Pettazzi L. Autonomous and distributed motion planning for satellite swarm. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 449−459 doi: 10.2514/1.22736
|
[44]
|
King-Smith M, Tsiotras P, Dellaert F. Simultaneous control and trajectory estimation for collision avoidance of autonomous robotic spacecraft systems. In: Proceedings of the International Conference on Robotics and Automation (ICRA). Philadelphia, USA: IEEE, 2022. 257-264
|
[45]
|
Castillo-Lopez M, Sajadi-Alamdari S A, Sanchez-Lopez J L, Olivares-Mendez M A, Voos H. Model predictive control for aerial collision avoidance in dynamic environments. In: Proceedings of the 26th Mediterranean Conference on Control and Automation (MED). Zadar, Croatia: IEEE, 2018. 1-6
|
[46]
|
刘青春, 周庆, 李兵飞, 刘朝辉. 开放式航空电子系统架构标准研究与实践. 航空标准化与质量, 2022(4): 1−5Liu Qing-Chun, Zhou Qing, Li Bing-Fei, Liu Zhao-Hui. Research and practice of open avionics system architecture standard. Aeronautic Standardization & Quality, 2022(4): 1−5
|
[47]
|
宁顺刚, 徐先栋, 张勐, 朱维超, 徐倩. 机动指挥装备开放式架构设计. 指挥信息系统与技术, 2025, 16(1): 95−100Ning Shun-Gang, Xu Xian-Dong, Zhang Meng, Zhu Wei-Chao, Xu Qian. Open architecture design for mobile command equipment. Command Information System and Technology, 2025, 16(1): 95−100
|
[48]
|
姜明, 汤俊, 谭湘林, 杨雁麟. 机载火控软件化雷达关键技术研究. 现代雷达, 2024, 46(2): 56−61Jiang Ming, Tang Jun, Tan Xiang-Lin, Yang Yan-Lin. A study on key technologies of airborne fire control software radar. Modern Radar, 2024, 46(2): 56−61
|
[49]
|
孙海峰, 刘俊阳, 程胜, 宋征宇. 面向下一代运载火箭的综合电子系统集成技术. 宇航学报, 2019, 40(3): 334−344Sun Hai-Feng, Liu Jun-Yang, Cheng Sheng, Song Zheng-Yu. Integration technology of avionics for next-generation launch vehicle. Journal of Astronautics, 2019, 40(3): 334−344
|
[50]
|
张明悦, 金芝, 赵海燕, 罗懿行. 机器学习赋能的软件自适应性综述. 软件学报, 2020, 31(8): 2404−2431Zhang Ming-Yue, Jin Zhi, Zhao Hai-Yan, Luo Yi-Xing. Survey of machine learning enabled software self-adaptation. Journal of Software, 2020, 31(8): 2404−2431
|
[51]
|
李青山, 廉宗民, 王璐, 谢生龙. 空间飞行器控制软件的动态自适应演化方法. 空间控制技术与应用, 2021, 47(2): 63−72Li Qing-Shan, Lian Zong-Min, Wang Lu, Xie Sheng-Long. Dynamic adaptive evolution method for control system of space vehicle. Aerospace Control and Application, 2021, 47(2): 63−72
|
[52]
|
Kousha P, Jain A, Kolli A, Miriyala S, Sainath P, Subramoni H, et al. "Hey CAI"-conversational AI enabled user interface for HPC tools. In: Proceedings of the 37th International Conference on ISC High Performance 2022. Hamburg, Germany: Springer, 2022. 87-108
|
[53]
|
Nichols D, Marathe A, Menon H, Gamblin T, Bhatele A. HPC-Coder: Modeling parallel programs using large language models. In: Proceedings of the 39th International Conference on ISC High Performance 2024. Hamburg, Germany: IEEE, 2024. 1-12
|
[54]
|
吴小明, 句美琪, 林佳伟, 王梦菲, 孙天逸, 高新宇. 虚拟测试技术在卫星研制中的应用. 空间控制技术与应用, 2023, 49(2): 83−89Wu Xiao-Ming, Ju Mei-Qi, Lin Jia-Wei, Wang Meng-Fei, Sun Tian-Yi, Gao Xin-Yu. Application of virtual test technology in satellite development. Aerospace Control and Application, 2023, 49(2): 83−89
|
[55]
|
The Open Group. The Open Group SOSA® consortium[Online], available: http://www.opengroup.org/sosa, September 12, 2025.
|
[56]
|
The Open Group. Documents & tools[Online], available: https://www.opengroup.org/face/docsandtools, September 12, 2025.
|
[57]
|
Elliott L, Jenkins S P, Moore M S, Yee H S. Potential for VICTORY and FACE.TM alignment – initial exploration of data interoperability and standards compliance / conformance. In: Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS). Novi, Michigan, 2019. 1-16 (查阅网上资料, 未找到本条文献出版者信息, 请核对)
|
[58]
|
Qian Xue-Sen, Xu Guo-Zhi, Wang Shou-Yun. The technology of organization and management-systems engineering. Journal of University of Shanghai for Science and Technology, 2011, 33(6): 520-525 (查阅网上资料, 未找到本条文献英文信息, 请核对)钱学森, 许国志, 王寿云. 组织管理的技术—系统工程. 上海理工大学学报, 2011, 33(6): 520-525
|
[59]
|
林杰, 唐志共, 钱炜祺, 王岳青, 张鹏, 徐炜遐, 等. 飞行器生成式模型气动设计研究进展与展望. 航空学报, 2025, 46(10): Article No. 631679Lin Jie, Tang Zhi-Gong, Qian Wei-Qi, Wang Yue-Qing, Zhang Peng, Xu Wei-Xia, et al. Research progress and prospects of aircraft aerodynamic design based on generative models. Acta Aeronautica et Astronautica Sinica, 2025, 46(10): Article No. 631679
|
[60]
|
李霓, 布树辉, 尚柏林, 李永波, 汤志荔, 张伟伟. 飞行器智能设计愿景与关键问题. 航空学报, 2021, 42(4): Article No. 524752Li Ni, Bu Shu-Hui, Shang Bo-Lin, Li Yong-Bo, Yang Zhi-Li, Zhang Wei-Wei. Aircraft intelligent design: Visions and key technologies. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): Article No. 524752
|
[61]
|
Production Promotion. Promoting high-quality development of the aerospace industry by advancing intelligent manufacturing in aerospace. China Aerospace News, 2023-10-18(003) (查阅网上资料, 未找到本条文献英文信息, 请核对)产发宣. 发展航天智能制造 推动航天产业高质量发展. 中国航天报, 2023-10-18(003)
|
[62]
|
Wei R, Yang R Z, Liu S J, Fan C S, Zhou R, Wu Z K, et al. Towards an extensible model-based digital twin framework for space launch vehicles. Journal of Industrial Information Integration, 2024, 41: Article No. 100641 doi: 10.1016/j.jii.2024.100641
|
[63]
|
陶飞, 孙清超, 孙惠斌, 穆晓凯, 张贺, 宋鲁凯, 等. 航空发动机数字孪生工程: 内涵与关键技术. 航空学报, 2024, 45(21): Article No. 630283Tao Fei, Sun Qing-Chao, Sun Hui-Bin, Mu Xiao-Kai, Zhang He, Song Lu-Kai, et al. Aero-engine digital twin engineering: Connotation and key technologies. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): Article No. 630283
|