2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能赋能航班化航天运输系统发展与思考

包为民

包为民. 智能赋能航班化航天运输系统发展与思考. 自动化学报, 2025, 51(10): 1−12 doi: 10.16383/j.aas.c250176
引用本文: 包为民. 智能赋能航班化航天运输系统发展与思考. 自动化学报, 2025, 51(10): 1−12 doi: 10.16383/j.aas.c250176
Bao Wei-Min. Development and thoughts on intelligent empowerment of airline-flight-mode aerospace transportation system. Acta Automatica Sinica, 2025, 51(10): 1−12 doi: 10.16383/j.aas.c250176
Citation: Bao Wei-Min. Development and thoughts on intelligent empowerment of airline-flight-mode aerospace transportation system. Acta Automatica Sinica, 2025, 51(10): 1−12 doi: 10.16383/j.aas.c250176

智能赋能航班化航天运输系统发展与思考

doi: 10.16383/j.aas.c250176 cstr: 32138.14.j.aas.c250176
详细信息
    作者简介:

    包为民:中国科学院院士, 中国航天科技集团有限公司研究员. 主要研究方向为航天运载总体与控制技术. E-mail: baoweimin@cashq.ac.cn

Development and Thoughts on Intelligent Empowerment of Airline-flight-mode Aerospace Transportation System

More Information
    Author Bio:

    BAO Wei-Min Academician of Chinese Academy of Sciences, professor at the China Aerospace Science and Technology Corporation. His research interest covers space launch vehicle general and control technology

  • 摘要: 发展航班化航天运输系统已成为提升航天运输能力的重要途径, 智能技术将为航班化航天运输系统建设发挥重要赋能作用. 通过梳理航天运输系统的发展现状与趋势, 分析智能化时代下的航班化航天运输形态, 形成智能赋能航天运载器、智能赋能运营管理体系、智能赋能研发保障生态三方面智能应用需求, 结合国内外研究进展提出对航班化航天运输系统智能赋能路径方法的发展思考, 最后总结并展望智能赋能航班化航天运输系统的发展方向.
  • 图  1  航天运输系统可重复使用发展历史

    Fig.  1  Aerospace transportation system reusable development history

    图  2  航天运输系统智能化发展历史

    Fig.  2  Aerospace transportation system intelligent development history

    图  3  智能时代下的航班化航天运输形态

    Fig.  3  Airline-flight-mode aerospace transportation form in the era of intelligence

  • [1] Bao W M, Wang X W. Develop highly reliable and low-cost technology for access to space, embrace the new space economy era. Aerospace China, 2019, 20(4): 23−30
    [2] 吴燕生. 中国航天运输系统的发展与未来. 导弹与航天运载技术, 2007(5): 1−4

    Wu Yan-Sheng. Development and future of space transportation system of China. Missiles and Space Vehicles, 2007(5): 1−4
    [3] 吴树范, 王伟, 温济帆, 吴岳东. 低轨互联网星座发展研究. 北京航空航天大学学报, 2024, 50(1): 1−11

    Wu Shu-Fan, Wang Wei, Wen Ji-Fan, Wu Yue-Dong. Review on development of LEO Internet constellation. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 1−11
    [4] 崔乃刚, 王平, 郭继峰, 程兴. 空间在轨服务技术发展综述. 宇航学报, 2007, 28(4): 805−811

    Cui Nai-Gang, Wang Ping, Guo Ji-Feng, Cheng Xing. A review of on-orbit servicing. Journal of Astronautics, 2007, 28(4): 805−811
    [5] 龙乐豪. 关于中国载人登月工程若干问题的思考. 导弹与航天运载技术, 2010(6): 1−5

    Long Le-Hao. On issues of China manned lunar exploration. Missiles and Space Vehicles, 2010(6): 1−5
    [6] Grantz A. X-37B orbital test vehicle and derivatives. In: Proceedings of the AIAA Space 2011 Conference & Exposition. Long Beach, USA: AIAA, 2011. 2942-2955
    [7] 郑卓, 禹春梅, 程晓明, 张惠平, 彭汉章, 柳嘉润. 运载火箭智能控制的能力特征与关键技术. 上海航天(中英文), 2022, 39(4): 52−57

    Zheng Zhuo, Yu Chun-Mei, Cheng Xiao-Ming, Zhang Hui-Ping, Peng Han-Zhang, Liu Jia-Run. Capability characteristics and key technologies for the intelligent control of launch vehicles. Aerospace Shanghai (Chinese & English), 2022, 39(4): 52−57
    [8] 宋征宇, 巩庆海, 王聪, 何勇, 施国兴. 长征运载火箭上升段的自主制导方法及其研究进展. 中国科学: 信息科学, 2021, 51(10): 1587−1608 doi: 10.1360/SSI-2021-0196

    Song Zheng-Yu, Gong Qing-Hai, Wang Cong, He Yong, Shi Guo-Xing. Review and progress of the autonomous guidance method for long march launch vehicle ascent flight. SCIENTIA SINICA Informationis, 2021, 51(10): 1587−1608 doi: 10.1360/SSI-2021-0196
    [9] 宋征宇, 潘豪, 王聪, 巩庆海. 长征运载火箭飞行控制技术的发展. 宇航学报, 2020, 41(7): 868−879

    Song Zheng-Yu, Pan Hao, Wang Cong, Gong Qing-Hai. Development of flight control technology of long march launch vehicles. Journal of Astronautics, 2020, 41(7): 868−879
    [10] 王小锭, 董晓琳, 高朝辉, 吴胜宝. 智慧火箭技术发展与智能等级分级设想. 中国航天, 2022(5): 22−28

    Wang Xiao-Ding, Dong Xiao-Lin, Gao Zhao-Hui, Wu Sheng-Bao. Technology development and intelligence level assumption for intelligent launch vehicles. Aerospace China, 2022(5): 22−28
    [11] 包为民. 航天智能控制技术让运载火箭“会学习”. 航空学报, 2021, 42(11): Article No. 525055

    Bao Wei-Min. Space intelligent control technology enables launch vehicle to "self-learning". Acta Aeronautica et Astronautica Sinica, 2021, 42(11): Article No. 525055
    [12] 包为民, 祁振强. 航班化航天运输系统中的控制问题. 宇航学报, 2023, 44(4): 607−611

    Bao Wei-Min, Qi Zhen-Qiang. Control problems of airline-flight-mode aerospace transportation system. Journal of Astronautics, 2023, 44(4): 607−611
    [13] 梁小辉, 胡昌华, 周志杰, 王青. 基于自适应动态规划的运载火箭智能姿态容错控制. 航空学报, 2021, 42(4): Article No. 524915

    Liang Xiao-Hui, Hu Chang-Hua, Zhou Zhi-Jie, Wang Qing. ADP-based intelligent attitude fault-tolerant control for launch vehicles. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): Article No. 524915
    [14] 马艳如, 石晓荣, 刘华华, 梁小辉, 王青. 运载火箭姿态系统自适应神经网络容错控制. 宇航学报, 2021, 42(10): 1237−1245

    Ma Yan-Ru, Shi Xiao-Rong, Liu Hua-Hua, Liang Xiao-Hui, Wang Qing. Adaptive neural network fault tolerant control of launch vehicle attitude system. Journal of Astronautics, 2021, 42(10): 1237−1245
    [15] 张荣升, 袁晗, 王紫扬, 秦旭东. 大型液体运载火箭姿态控制参数智能设计方法. 宇航学报, 2023, 44(12): 1883−1893

    Zhang Rong-Sheng, Yuan Han, Wang Zi-Yang, Qin Xu-Dong. Intelligent attitude control parameter design method for large liquid launch vehicle. Journal of Astronautics, 2023, 44(12): 1883−1893
    [16] Zhou Y, Van Kampen E J, Chu Q P. Nonlinear adaptive flight control using incremental approximate dynamic programming and output feedback. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 489-496 (查阅网上资料, 不确定本条文献页码信息, 请核对)
    [17] 谭述君, 何骁, 张立勇, 吴志刚. 运载火箭推力故障下基于智能决策的在线轨迹重规划方法. 宇航学报, 2021, 42(10): 1228−1236

    Tan Shu-Jun, He Xiao, Zhang Li-Yong, Wu Zhi-Gang. Online trajectory replanning method based on intelligent decision-making for launch vehicles under thrust drop failure. Journal of Astronautics, 2021, 42(10): 1228−1236
    [18] Song Z Y, Wang C, Gong Q H. Joint dynamic optimization of the target orbit and flight trajectory of a launch vehicle based on state-triggered indices. Acta Astronautica, 2020, 174: 82−93 doi: 10.1016/j.actaastro.2020.04.017
    [19] 包为民. 可重复使用运载火箭技术发展综述. 航空学报, 2023, 44(23): Article No. 629555

    Bao Wei-Min. A review of reusable launch vehicle technology development. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): Article No. 629555
    [20] Marques A N, Wang Q Q, Marzouk Y. Data-driven integral boundary-layer modeling for airfoil performance prediction in laminar regime. AIAA Journal, 2018, 56(2): 482−496 doi: 10.2514/1.J055877
    [21] 杜涛, 许晨舟, 王国辉, 宫宇昆, 何巍, 牟宇, 等. 人工智能气动特性预测技术在火箭子级落区控制项目的应用. 宇航学报, 2021, 42(1): 61−73

    Du Tao, Xu Chen-Zhou, Wang Guo-Hui, Gong Yu-Kun, He Wei, Mou Yu, et al. The application of aerodynamic coefficients prediction technique via artificial intelligence method to rocket first stage landing area control project. Journal of Astronautics, 2021, 42(1): 61−73
    [22] 陈书钊, 楚龙飞, 杨秀梅, 蔡德淮. 状态预测神经网络控制应用于小型可回收火箭. 航空学报, 2019, 40(3): Article No. 322286

    Chen Shu-Zhao, Chu Long-Fei, Yang Xiu-Mei, Cai De-Huai. Application of state prediction neural network control algorithm in small reusable rocket. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): Article No. 322286
    [23] 黄旭, 柳嘉润, 贾晨辉, 骆无意, 巩庆海, 冯明涛. 强化学习控制方法及在类火箭飞行器上的应用. 宇航学报, 2023, 44(5): 708−718

    Huang Xu, Liu Jia-Run, Jia Chen-Hui, Luo Wu-Yi, Gong Qing-Hai, Feng Ming-Tao. Reinforcement learning control and its application on rocket-like vehicle. Journal of Astronautics, 2023, 44(5): 708−718
    [24] 包为民, 祁振强. 航天装备体系化仿真发展的思考. 系统仿真学报, 2024, 36(6): 1257−1272

    Bao Wei-Min, Qi Zhen-Qiang. Thinking of aerospace equipment systematization simulation technology development. Journal of System Simulation, 2024, 36(6): 1257−1272
    [25] 王小军. 下一代航天运输系统发展思考. 导弹与航天运载技术(中英文), 2022(6): 1−7

    Wang Xiao-Jun. Reflections on the development of next generation space transportation system. Missiles and Space Vehicles, 2022(6): 1−7
    [26] Intel. Intel® products[Online], available: https://ark.intel.com/content/www/us/en/ark/products/12246\\1/intel-movidius-myriad-2-vision-processing-unit-4gb.html, September 12, 2025.
    [27] 唐磊, 马钟, 李申, 王钟犀. 天基智能计算技术现状与发展趋势. 微电子学与计算机, 2022, 39(4): 1−8

    Tang Lei, Ma Zhong, Li Shen, Wang Zhong-Xi. The present situation and developing trends of space-based intelligent computing technology. Microelectronics & Computer, 2022, 39(4): 1−8
    [28] 秦剑华. 航天器电源系统故障诊断与健康评价研究[博士学位论文], 南京航空航天大学, 中国, 2018

    Qin Jian-Hua. Research on Fault Diagnosis and Health Evaluation in Spacecraft Electrical Power System[Ph., D. dissertation], Nanjing University of Aeronautics and Astronautics, China, 2018
    [29] 陶江. 基于视觉的空间碎片智能感知方法研究 [博士学位论文], 南京航空航天大学, 中国, 2023

    Tao Jiang. Research on Visual Based Space Debris Intelligent Perception Method [Ph., D. dissertation], Nanjing University of Aeronautics and Astronautics, China, 2023
    [30] 王桂胜, 王叶群, 孙启禄, 任婷婷, 张玉婕. 智能无人系统“云脑”架构之初步思考. In: 第八届中国指挥控制大会论文集. 北京: 中国指挥与控制学会, 2020. 738-741

    Wang Gui-Sheng, Wang Ye-Qun, Sun Qi-Lu, Ren Ting-Ting, Zhang Yu-Jie. Preliminary thought for the “Cloud Brain” Architecture of Intelligent Unmanned System. In: Proceedings of the 8th China Command and Control Conference. Beijing: Chinese Command and Control Society, 2020. 738-741
    [31] Li Y J, Wang M, Hwang K, Li Z D, Ji T K. LEO satellite constellation for global-scale remote sensing with on-orbit cloud AI computing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 9369−9381 doi: 10.1109/JSTARS.2023.3316298
    [32] 陈占胜, 朱维各. 异构巨型星座开放式敏捷架构设计. 上海航天(中英文), 2024, 41(3): 95−102

    Chen Zhan-Sheng, Zhu Wei-Ge. Open agile architecture design for heterogeneous mega constellations. Aerospace Shanghai (Chinese & English), 2024, 41(3): 95−102
    [33] 季翔, 许长桥, 张宏科. 面向立体化异构网络的智融协同传输方法. 计算机研究与发展, 2024, 61(11): 2693−2705

    Ji Xiang, Xu Chang-Qiao, Zhang Hong-Ke. Smart integrated cooperative transmission method for stereoscopic heterogeneous networks. Journal of Computer Research and Development, 2024, 61(11): 2693−2705
    [34] Muelhaupt T J, Sorge M E, Morin J, Wilson R S. Space traffic management in the new space era. Journal of Space Safety Engineering, 2019, 6(2): 80−87 doi: 10.1016/j.jsse.2019.05.007
    [35] Long J, Zhang T. Pillars of space traffic management in the era of LEO mega-constellations: A global perspective. Advances in Space Research, 2024, 74(2): 800−816 doi: 10.1016/j.asr.2024.04.011
    [36] 中国民用航空局. 中国民用航空局关于印发智慧民航建设路线图的通知[Online], available: https://www.gov.cn/xinwen/2022-01/21/5669771/files/f7402a57bcf349b0ae8d1224a0f35737.pdf, 2025年9月12日.

    Civil Aviation Administration of China. Notice from the civil aviation administration of China on issuing the roadmap for intelligent civil aviation construction[Online], available: https://www.gov.cn/xinwen/2022-01/21/5669771/files/f7402a57bcf349b0ae8d1224a0f35737.pdf, September 12, 2025.
    [37] 闫家帅. 航天发射任务多约束调度建模及算法实现[硕士学位论文], 电子科技大学, 中国, 2014

    Yan Jia-Shuai. Multi-Constrained Space Launch Task Scheduling Modeling and Algorithm Implementation[Master dissertation], University of Electronic Science and Technology of China, China, 2014
    [38] 淳静, 李阳, 杨俊. 基于粒子群算法的航天发射任务规划技术. 导弹与航天运载技术(中英文), 2024(6): 47−53

    Chun Jing, Li Yang, Yang Jun. Space launch mission planning technology based on particle swarm optimization. Missiles and Space Vehicles, 2024(6): 47−53
    [39] 张志成, 崔展鹏, 陈默, 刘俊林, 唐小松. 智慧航天港——航天发射场未来演进趋势探讨. 中国航天, 2023(12): 7−13

    Zhang Zhi-Cheng, Cui Zhan-Peng, Chen Mo, Liu Jun-Lin, Tang Xiao-Song. Intelligent spaceports: Future evolution trends of space launch sites. Aerospace China, 2023(12): 7−13
    [40] 席政. 人工智能在航天飞行任务规划中的应用研究. 航空学报, 2007, 28(4): 791−795

    Xi Zheng. Study on mission planning of spaceflight applying artificial intelligence. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 791−795
    [41] 于连波, 曹品钊, 石亮, 连捷, 王东. 基于改进冲突搜索的多智能体路径规划算法. 航空学报, 2023, 44(S1): 727648

    Yu Lian-Bo, Cao Pin-Zhao, Shi Liang, Lian Jie, Wang Dong. An improved conflict-based search algorithm for multi-agent path planning. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727648
    [42] Izzo D, Simões L F, De Croon G C H E. An evolutionary robotics approach for the distributed control of satellite formations. Evolutionary Intelligence, 2014, 7(2): 107−118 doi: 10.1007/s12065-014-0111-9
    [43] Izzo D, Pettazzi L. Autonomous and distributed motion planning for satellite swarm. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 449−459 doi: 10.2514/1.22736
    [44] King-Smith M, Tsiotras P, Dellaert F. Simultaneous control and trajectory estimation for collision avoidance of autonomous robotic spacecraft systems. In: Proceedings of the International Conference on Robotics and Automation (ICRA). Philadelphia, USA: IEEE, 2022. 257-264
    [45] Castillo-Lopez M, Sajadi-Alamdari S A, Sanchez-Lopez J L, Olivares-Mendez M A, Voos H. Model predictive control for aerial collision avoidance in dynamic environments. In: Proceedings of the 26th Mediterranean Conference on Control and Automation (MED). Zadar, Croatia: IEEE, 2018. 1-6
    [46] 刘青春, 周庆, 李兵飞, 刘朝辉. 开放式航空电子系统架构标准研究与实践. 航空标准化与质量, 2022(4): 1−5

    Liu Qing-Chun, Zhou Qing, Li Bing-Fei, Liu Zhao-Hui. Research and practice of open avionics system architecture standard. Aeronautic Standardization & Quality, 2022(4): 1−5
    [47] 宁顺刚, 徐先栋, 张勐, 朱维超, 徐倩. 机动指挥装备开放式架构设计. 指挥信息系统与技术, 2025, 16(1): 95−100

    Ning Shun-Gang, Xu Xian-Dong, Zhang Meng, Zhu Wei-Chao, Xu Qian. Open architecture design for mobile command equipment. Command Information System and Technology, 2025, 16(1): 95−100
    [48] 姜明, 汤俊, 谭湘林, 杨雁麟. 机载火控软件化雷达关键技术研究. 现代雷达, 2024, 46(2): 56−61

    Jiang Ming, Tang Jun, Tan Xiang-Lin, Yang Yan-Lin. A study on key technologies of airborne fire control software radar. Modern Radar, 2024, 46(2): 56−61
    [49] 孙海峰, 刘俊阳, 程胜, 宋征宇. 面向下一代运载火箭的综合电子系统集成技术. 宇航学报, 2019, 40(3): 334−344

    Sun Hai-Feng, Liu Jun-Yang, Cheng Sheng, Song Zheng-Yu. Integration technology of avionics for next-generation launch vehicle. Journal of Astronautics, 2019, 40(3): 334−344
    [50] 张明悦, 金芝, 赵海燕, 罗懿行. 机器学习赋能的软件自适应性综述. 软件学报, 2020, 31(8): 2404−2431

    Zhang Ming-Yue, Jin Zhi, Zhao Hai-Yan, Luo Yi-Xing. Survey of machine learning enabled software self-adaptation. Journal of Software, 2020, 31(8): 2404−2431
    [51] 李青山, 廉宗民, 王璐, 谢生龙. 空间飞行器控制软件的动态自适应演化方法. 空间控制技术与应用, 2021, 47(2): 63−72

    Li Qing-Shan, Lian Zong-Min, Wang Lu, Xie Sheng-Long. Dynamic adaptive evolution method for control system of space vehicle. Aerospace Control and Application, 2021, 47(2): 63−72
    [52] Kousha P, Jain A, Kolli A, Miriyala S, Sainath P, Subramoni H, et al. "Hey CAI"-conversational AI enabled user interface for HPC tools. In: Proceedings of the 37th International Conference on ISC High Performance 2022. Hamburg, Germany: Springer, 2022. 87-108
    [53] Nichols D, Marathe A, Menon H, Gamblin T, Bhatele A. HPC-Coder: Modeling parallel programs using large language models. In: Proceedings of the 39th International Conference on ISC High Performance 2024. Hamburg, Germany: IEEE, 2024. 1-12
    [54] 吴小明, 句美琪, 林佳伟, 王梦菲, 孙天逸, 高新宇. 虚拟测试技术在卫星研制中的应用. 空间控制技术与应用, 2023, 49(2): 83−89

    Wu Xiao-Ming, Ju Mei-Qi, Lin Jia-Wei, Wang Meng-Fei, Sun Tian-Yi, Gao Xin-Yu. Application of virtual test technology in satellite development. Aerospace Control and Application, 2023, 49(2): 83−89
    [55] The Open Group. The Open Group SOSA® consortium[Online], available: http://www.opengroup.org/sosa, September 12, 2025.
    [56] The Open Group. Documents & tools[Online], available: https://www.opengroup.org/face/docsandtools, September 12, 2025.
    [57] Elliott L, Jenkins S P, Moore M S, Yee H S. Potential for VICTORY and FACE.TM alignment – initial exploration of data interoperability and standards compliance / conformance. In: Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS). Novi, Michigan, 2019. 1-16 (查阅网上资料, 未找到本条文献出版者信息, 请核对)
    [58] Qian Xue-Sen, Xu Guo-Zhi, Wang Shou-Yun. The technology of organization and management-systems engineering. Journal of University of Shanghai for Science and Technology, 2011, 33(6): 520-525 (查阅网上资料, 未找到本条文献英文信息, 请核对)

    钱学森, 许国志, 王寿云. 组织管理的技术—系统工程. 上海理工大学学报, 2011, 33(6): 520-525
    [59] 林杰, 唐志共, 钱炜祺, 王岳青, 张鹏, 徐炜遐, 等. 飞行器生成式模型气动设计研究进展与展望. 航空学报, 2025, 46(10): Article No. 631679

    Lin Jie, Tang Zhi-Gong, Qian Wei-Qi, Wang Yue-Qing, Zhang Peng, Xu Wei-Xia, et al. Research progress and prospects of aircraft aerodynamic design based on generative models. Acta Aeronautica et Astronautica Sinica, 2025, 46(10): Article No. 631679
    [60] 李霓, 布树辉, 尚柏林, 李永波, 汤志荔, 张伟伟. 飞行器智能设计愿景与关键问题. 航空学报, 2021, 42(4): Article No. 524752

    Li Ni, Bu Shu-Hui, Shang Bo-Lin, Li Yong-Bo, Yang Zhi-Li, Zhang Wei-Wei. Aircraft intelligent design: Visions and key technologies. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): Article No. 524752
    [61] Production Promotion. Promoting high-quality development of the aerospace industry by advancing intelligent manufacturing in aerospace. China Aerospace News, 2023-10-18(003) (查阅网上资料, 未找到本条文献英文信息, 请核对)

    产发宣. 发展航天智能制造 推动航天产业高质量发展. 中国航天报, 2023-10-18(003)
    [62] Wei R, Yang R Z, Liu S J, Fan C S, Zhou R, Wu Z K, et al. Towards an extensible model-based digital twin framework for space launch vehicles. Journal of Industrial Information Integration, 2024, 41: Article No. 100641 doi: 10.1016/j.jii.2024.100641
    [63] 陶飞, 孙清超, 孙惠斌, 穆晓凯, 张贺, 宋鲁凯, 等. 航空发动机数字孪生工程: 内涵与关键技术. 航空学报, 2024, 45(21): Article No. 630283

    Tao Fei, Sun Qing-Chao, Sun Hui-Bin, Mu Xiao-Kai, Zhang He, Song Lu-Kai, et al. Aero-engine digital twin engineering: Connotation and key technologies. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): Article No. 630283
  • 加载中
计量
  • 文章访问数:  15
  • HTML全文浏览量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-23
  • 录用日期:  2025-06-18
  • 网络出版日期:  2025-10-11

目录

    /

    返回文章
    返回