Adaptive ADRC for the Fine Tracking System in Inter-satellite Laser Communication Based on Improved ESO
-
摘要: 星间激光通信中的光束指向误差会显著降低链路质量. 精跟踪系统因其高带宽特性, 主要负责对高频扰动进行实时修正. 针对精跟踪环节所面临的高频扰动, 传统自抗扰控制(ADRC)在扰动估计与补偿方面仍存在性能瓶颈. 本文考虑一种特殊的干扰形式, 并基于此构造具备频率分离能力的改进扩张状态观测器(ESO), 实现对快慢变扰动的解耦. 在此基础上提出一种融合自适应滤波的自适应ADRC框架, 该方法在传统ADRC框架基础上, 引入并联自适应滤波器, 通过滤波器权重在线更新实现对光束指向误差的自适应抑制, 提升系统在高频干扰下的控制性能. 实验结果表明, 所提方法相比传统控制方法具有更强的扰动抑制能力.Abstract: Beam pointing errors in inter-satellite laser communication can significantly degrade the link quality. The fine tracking system, characterized by its high bandwidth, is primarily responsible for real-time correction of high-frequency disturbances. However, traditional active disturbance rejection control (ADRC) exhibits limited performance in estimating and compensating high-frequency disturbances in the fine tracking stage. To address this problem, this paper considers a specific form of disturbance, based on this formulation, we construct an improved extended state observer (ESO) with frequency separation capability to decouple slow-varying and fast-varying disturbances. Based on the improved ESO, an adaptive ADRC framework incorporating an adaptive filter is proposed. The proposed method enhances the conventional ADRC framework by introducing a parallel adaptive filter, which enables adaptive suppression of the beam pointing errors is achieved through online weight updating, thereby improving the system's control performance under high-frequency disturbances. Experimental results demonstrate that the proposed method outperforms conventional control methods in disturbance rejection.
-
表 1 星上主要扰源及其干扰形式
Table 1 Main disturbance sources on the satellite and their disturbance forms
扰源 干扰形式 反作用飞轮、控制力矩陀螺、动量轮 多频线谱和宽频噪声 天线等驱动机构 多频线谱和宽频噪声 三浮陀螺 宽频噪声 磁力矩器 宽频噪声 表 2 激光通信捕跟控制算法实验平台中快反镜的参数
Table 2 Parameters of fast steering mirror in experimental platform for laser communication acquisition and tracking control algorithm
方向 $ a_1 $ (1/s) $ a_2 $ (1/$ {\rm{s}}^2 $) b ($ 10^{-6} {\rm{rad}}/({\rm{s}}^2 \cdot V) $) x 1 809 $ 7.301 \times 10^6 $ $ 6.079 \times 10^6 $ y(真实器件) 1 981 $ 7.487 \times 10^6 $ $ 4.736 \times 10^6 $ y(控制器设计) 1 809 $ 7.301 \times 10^6 $ $ 6.079 \times 10^6 $ 表 3 实验中使用的控制器参数
Table 3 Parameters of controllers used in experiment
本文方法 PID 传统LADRC FxLMS+PID σ $ 2\times 10^{-6} $ - - - $ k_p $ 0.43 0.43 0.95 0.43 $ k_i $ 1 339 1 339 - 1 339 $ k_d $ $ 3.5 \times 10 ^{-5} $ $ 3.5 \times 10 ^{-5} $ $ -3.5 \times 10 ^{-5} $ $ 3.5 \times 10 ^{-5} $ $ \omega_o $ 400 - 400 - μ $ \mathrm{1\times 10^{-6}} $ - - $ 5\times 10^{-8}(x) $, $ 3\times 10^{-6}(y) $ M 128 - - 128 表 4 改进ESO与传统ESO估计性能对比(V)
Table 4 Comparison of estimation performance between improved and traditional ESO (V)
最大绝对误差 平均误差 均方根误差 传统ESO x轴 $ {\bf 0.995} $ $ \bf -0.026 $ $ {\bf 0.487} $ y轴 $ {\bf 1.119} $ $ -0.041 $ $ {\bf 0.492} $ 改进ESO x轴 $ 1.038 $ $ \bf -0.026 $ $ 0.499 $ y轴 $ 1.137 $ $ {\bf -0.040} $ $ 0.504 $ 表 5 不同控制方法下指向误差的均方根($ 10^{-6} $rad)
Table 5 RMS of pointing error under different methods ($ 10^{-6} $rad)
控制方法 x轴 y轴 $ 30 \sim 35 $s $ 55 \sim 60 $s $ 30 \sim 35 $s $ 55 \sim 60 $s 无控制 100.26 101.10 93.15 94.13 传统LADRC 51.54 52.71 52.52 53.30 PID 31.45 34.73 25.45 27.03 FxLMS+PID 32.60 35.54 8.04 8.73 本文方法 8.08 8.04 5.30 5.35 -
[1] Zhenchuang Li, Junli Guo, Tao Qin, Jin Wang, Zhangang Cui, Peixian Han, et al. Integrated modeling and analysis of the microvibration effects on the line-of-sight stability for the space laser communication terminal. Optical Engineering, 2024, 63(2): Article No. 024110 [2] Abdelbaset S Hamza, Jitender S Deogun, Dennis R Alexander. Classification Framework for Free Space Optical Communication Links and Systems. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1346−1382 [3] H Kaushal, G Kaddoum. Optical Communication in Space: Challenges and Mitigation Techniques. IEEE Communications Surveys & Tutorials, 2017, 19(1): 57−96 [4] Zhang Yao. Jitter Control for Optical Payload on Satellites. Journal of Aerospace Engineering, 2014, 27(4): Article No. 04014005 [5] Huang Jie, Xi Juntong, Yu Zif. Study on Micro-vibration Isolation System Design and Validation for the SDLT-1 Satellite of China. Journal of Vibration Engineering & Technologies, 2023, 11(8): 3879−3891 [6] Qinggui Hu, Yining Mu. Influence of vibration on the coupling efficiency in spatial receiver and its compensation method. Optical Engineering, 2024, 57(04): Article No. 046105 [7] Xie Meilin, Ma Caiwen, Yao Cheng, Huang Wei, Lian Xuezheng, Feng Xubin, et al. Reflector control technology in space laser communication. In: LIDAR Imaging Detection and Target Recognition 2017. Changchun, China: SPIE, 2017. 6 [8] René Rüddenklau, Fabian Rein, Christian Roubal, Benjamin Rödiger, Christopher Schmidt. In-orbit demonstration of acquisition and tracking on OSIRIS4CubeSat. Optics Express, 2024, 32(23): 41188−41200 doi: 10.1364/OE.537889 [9] Kiwook Baeck, Junsung Wi, Hyosang Yoon. Analytic pointing error evaluation on nano-satellite laser communication system. Optics Communications, 2024, 559: Article No. 130419 doi: 10.1016/j.optcom.2024.130419 [10] Furui Lv, Yongkai Liu, Shijie Gao, Hao Wu, Feng Guo. Research on Bandwidth Improvement of Fine Tracking Control System in Space Laser Communication. Photonics, 2023, 10(11): Article No. 1179 doi: 10.3390/photonics10111179 [11] Riccardo Antonello, Francesco Branz, Francesco Sansone, Angelo Cenedese, Alessandro Francesconi. High-Precision Dual-Stage Pointing Mechanism for Miniature Satellite Laser Communication Terminals. IEEE Transactions on Industrial Electronics, 2021, 68(1): 776−785 doi: 10.1109/TIE.2020.2972452 [12] Francesco Sansone, Francesco Branz, Andrea Vettor, Edoardo Birello, Gian Paolo Guizzo, Riccardo Antonello, et al. Calibration and Verification of Pointing and Tracking System for Optical Communication Terminal. AIAA Journal, 2023, 61(2): 510−517 doi: 10.2514/1.J062325 [13] Özgenç Subaşı, Bilal Erol, Berk Altıner, Harun Turan, Nurdan Baci. $H_{\infty}$ controller design for the mitigation of atmospheric effects on the laser beam pointing. Transactions of the Institute of Measurement and Control, 2021, 43(8): 1786−1801 doi: 10.1177/0142331221998465 [14] Zhao Cui, Xing-Guang Qian, Hao-Qi Shi, Zong-Jin Ye, Xue Wang, Cheng-WenXing. Research on noise suppression of inter-satellite laser pointing jitter. In: Earth and Space: From Infrared to Terahertz (ESIT 2022). Nantong, China: SPIE, 2022. 16 [15] Yu-Hao Chang, Guangbo Hao, Chien-Sheng Liu. Design and characterisation of a compact 4-degree-of-freedom fast steering mirror system based on double Porro prisms for laser beam stabilization. Sensors and Actuators A: Physical, 2021, 322: Article No. 112639 doi: 10.1016/j.sna.2021.112639 [16] Yan-Hua Ma, Zeng-Bao Zhang, Zhi-Guo Zhang, Qin Liu, Xin He, Wen-Bo Shi, et al. Precision beam pointing control with jitter attenuation by optical deflector exhibiting dynamic hysteresis in COIL. In: XX International Symposium on High Power Laser Systems and Applications. Chengdu, China: SPIE, 2014. 92551U [17] R. Joseph Watkins, Brij N. Agrawal. Use of Least Means Squares Filter in Control of Optical Beam Jitter. Journal of Guidance, Control, and Dynamics, 2007, 30(4): 1116−1122 doi: 10.2514/1.26778 [18] Hyungjoo Yoon, Brett E. Bateman, Brij N. Agrawal. Laser Beam Jitter Control Using Recursive-Least-Squares Adaptive Filters. Journal of Dynamic Systems, Measurement, and Control, 2011, 133(4): Article No. 041001 [19] Michael J. Beerer, Hyungjoo Yoon, Brij N. Agrawal. Practical adaptive filter controls for precision beam pointing and tracking with jitter attenuation. Control Engineering Practice, 2013, 21(1): 122−133 doi: 10.1016/j.conengprac.2012.09.018 [20] Xuan Wang, Xiuqin Su, Guizhong Liu, Junfeng Han, Rui Wang, Kaidi Wang. Laser beam jitter control of the link in free space optical communication systems. Optics Express, 2021, 29(25): 41582−41599 doi: 10.1364/OE.443411 [21] 周睿, 张强, 廖勇, 甘永东, 沈锋, 李新阳. 混合自适应滤波的光束抖动控制技术研究. 激光与光电子学进展, 2021, 58(13): Article No. 1314004 doi: 10.3788/LOP202158.1314004Zhou Rui, Zhang Qiang, Liao Yong, Gan Yongdong, Shen Feng, Li Xinyang. Research on Beam Jitter Control Technology Base on Hybrid Adaptive Filter. Laser & Optoelectronics Progress, 2021, 58(13): Article No. 1314004 doi: 10.3788/LOP202158.1314004 [22] Yunhao Su, Junfeng Han, Xuan Wang, Caiwen Ma, Jianming Wu. Adaptive compound control of laser beam jitter in deep-space optical communication systems. Optics Express, 2024, 32(13): 23228−23244 doi: 10.1364/OE.521520 [23] Yukai Zhu, Lei Guo, Jianzhong Qiao, Wenshuo Li. An enhanced anti-disturbance attitude control law for flexible spacecrafts subject to multiple disturbances. Control Engineering Practice, 2019, 84: 274−283 doi: 10.1016/j.conengprac.2018.11.001 [24] Yongjian Yang, Yangyang Cui, Yukai Zhu, Jianzhong Qiao. Fixed-Time Refined Disturbance Observer-Based Composite Control for Periscope-Type Coarse Pointing Assembly. IEEE Transactions on Industrial Electronics, 2024, 71(11): 14896−14905 doi: 10.1109/TIE.2024.3376831 [25] Yongjian Yang, Zeyu Bao, Jianzhong Qiao, Yukai Zhu, Lei Guo. Refined Metamodel Disturbance Observer-Based Control for Coarse Pointing Assembly Under Constraints. Guidance, Navigation and Control, 2024, 04(04): Article No. 2450017 doi: 10.1142/S2737480724500171 [26] Rui Zhang, Kai Zhao, Sijun Fang, Wentong Fan, Hongwen Hai, Jian Luo, et al. Research on High-Stability Composite Control Methods for Telescope Pointing Systems under Multiple Disturbances. Sensors, 2024, 24(9): Article No. 2907 doi: 10.3390/s24092907 [27] Jingqing Han. From PID to Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900−906 doi: 10.1109/TIE.2008.2011621 [28] Zhiqiang Gao. Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the 2003 American Control Conference. Denver, CO, USA: IEEE, 2003. 4989−4996 [29] Cui Ning, Liu Yang, Chen Xinglin, Wang Yan. Active disturbance rejection controller of fine tracking system for free space optical communication. In: Fifth International Symposium on Photoelectronic Detection and Imaging (ISPDI 2013). Beijing, China: SPIE, 2013. 890613 [30] Zheng Zhou, Xingfei Li, Weixiao Tuo, Fan Wang. Design of active disturbance rejection control with noise observer for an optical reference unit. Control Engineering Practice, 2023, 132: Article No. 105427 doi: 10.1016/j.conengprac.2022.105427 [31] Jiuqiang Deng, Luyao Zhang, Wenchao Xue, Qiliang Bao, Yao Mao. On Active Disturbance Compression Control by Twice-Extended State Observer for Laser Pointing System. IEEE Transactions on Industrial Electronics, 2024, 71(12): 16523−16533 doi: 10.1109/TIE.2024.3392997 [32] Mo Hei, Lian-chao Zhang, Qing-kun Zhou, Ya-fei Lu, Da-peng Fan. Model-based design method of two-axis four-actuator fast steering mirror system. Journal of Central South University, 2015, 22(1): 150−158 doi: 10.1007/s11771-015-2505-y [33] 孟光, 周徐斌. 卫星微振动及控制技术进展. 航空学报, 2015, 36(8): 2609−2619 doi: 10.7527/S1000-6893.2015.0169Meng G, Zhou X B. Progress review of satellite micro-vibration and control. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2609−2619 doi: 10.7527/S1000-6893.2015.0169 [34] Mohamed A Ali, Fawzy Eltohamy, Adel Abd-Elrazek, Mohamed E. Hanafy. Assessment of micro-vibrations effect on the quality of remote sensing satellites images. International Journal of Image and Data Fusion, 2023, 14(3): 243−260 doi: 10.1080/19479832.2023.2167874 [35] 罗勇, 刘凯凯, 杨帆, 等. 快反镜系统滑模复合分层干扰观测补偿控制. 光电工程, 2023, 50(4): 104−113 doi: 10.12086/oee.2023.220330Luo Yong, Liu Kai-Kai, Yang Fan, Wen Xin-Yi, Huang Yong-Mei, et al. Observation and compensation control of sliding mode compound layered interference for the fast steering mirror system. Opto-Electron Eng, 2023, 50(4): 104−113 doi: 10.12086/oee.2023.220330 [36] Shanfeng Zhu, Wenxin Huang, Yajun Zhao, Xiaogang Lin, Dingfeng Dong, Wen Jiang, et al. Robust Speed Control of Electrical Drives with Reduced Ripple Using Adaptive Switching High-order Extended State Observer. Signal Processing, 2022, 37(2): 2009−2020 [37] Shengrong Zhuo, Arnaud Gaillard, Liangcai Xu, Hao Bai, Damien Paire, Fei Gao. Enhanced Robust Control of a DC-DC Converter for Fuel Cell Application Based on High-Order Extended State Observer. IEEE Transactions on Transportation Electrification, 2020, 6(1): 278−287 doi: 10.1109/TTE.2020.2974582 [38] Lu Wang, Xiantao Li, Zhanmin Zhou, Yuzhang Liu, Zongyuan Yang, Shitao Zhang, et al. Disturbance Observation and Suppression in an Airborne Electro-Optical Stabilized Platform Based on a Generalized High-Order Extended State Observer. Sensors, 2024, 24(11): Article No. 3629 doi: 10.3390/s24113629 [39] Lin Li, Li Wang, Li Yuan, Ran Zheng, Yanpeng Wu, Jie Sui, et al. Micro-vibration suppression methods and key technologies for high-precision space optical instruments. Acta Astronautica, 2021, 180: 417−428 doi: 10.1016/j.actaastro.2020.12.054 [40] 陈增强, 孙明玮, 杨瑞光. 线性自抗扰控制器的稳定性研究. 自动化学报, 2013, 39(5): 574−580Chen Zeng-Qiang, Sun Ming-Wei, Yang Rui-Guang. On the stability of linear active disturbance rejection control. Acta Automatica Sinica, 2013, 39(5): 574−580 [41] Leonardo Rey Vega, Hernan Rey, Jacob Benesty. Stability analysis of adaptive filters with regression vector nonlinearities. Signal Processing, 2011, 91(8): 2091−2100 doi: 10.1016/j.sigpro.2011.03.018 [42] Robert Miklosovic, Aaron Radke, Zhiqiang Gao. Discrete implementation and generalization of the extended state observer. In: 2006 American Control Conference. Minneapolis, MN, USA: IEEE, 2006. 6 pp. [43] 黄博妍, 常琳, 马亚平, 孙金玮, 魏国. 一种应对非平稳频率失调的窄带主动噪声控制系统. 自动化学报, 2015, 41(1): 186−193 doi: 10.16383/j.aas.2015.c130797Huang Bo-Yan, Chang Lin, Ma Ya-Ping, Sun JinWei, Wei Guo. A new narrowband ANC system against nonstationary frequency mismatch. Acta Automatica Sinica, 2015, 41(1): 186−193 doi: 10.16383/j.aas.2015.c130797 [44] Shuhui Li, Hoyun Won, Xingang Fu, Michael Fairbank, Donald C. Wunsch, Eduardo Alonso. Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated. IEEE Transactions on Cybernetics, 2020, 50(7): 3218−3230 doi: 10.1109/TCYB.2019.2897653 [45] Nolan Tsuchiya, Steve Gibson, Tsu-Chin Tsao, Michel Verhaegen. Receding-Horizon Adaptive Control of Laser Beam Jitter. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 227−237 doi: 10.1109/TMECH.2015.2427379 -
计量
- 文章访问数: 16
- HTML全文浏览量: 12
- 被引次数: 0
下载: