• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进ESO的星间激光通信精跟踪自适应自抗扰控制

李伟鹏 刘泽书 包泽宇 乔建忠 朱玉凯

李伟鹏, 刘泽书, 包泽宇, 乔建忠, 朱玉凯. 基于改进ESO的星间激光通信精跟踪自适应自抗扰控制. 自动化学报, 2025, 51(12): 2633−2647 doi: 10.16383/j.aas.c250102
引用本文: 李伟鹏, 刘泽书, 包泽宇, 乔建忠, 朱玉凯. 基于改进ESO的星间激光通信精跟踪自适应自抗扰控制. 自动化学报, 2025, 51(12): 2633−2647 doi: 10.16383/j.aas.c250102
Li Wei-Peng, Liu Ze-Shu, Bao Ze-Yu, Qiao Jian-Zhong, Zhu Yu-Kai. Adaptive ADRC for the fine tracking system in inter-satellite laser communication based on improved ESO. Acta Automatica Sinica, 2025, 51(12): 2633−2647 doi: 10.16383/j.aas.c250102
Citation: Li Wei-Peng, Liu Ze-Shu, Bao Ze-Yu, Qiao Jian-Zhong, Zhu Yu-Kai. Adaptive ADRC for the fine tracking system in inter-satellite laser communication based on improved ESO. Acta Automatica Sinica, 2025, 51(12): 2633−2647 doi: 10.16383/j.aas.c250102

基于改进ESO的星间激光通信精跟踪自适应自抗扰控制

doi: 10.16383/j.aas.c250102 cstr: 32138.14.j.aas.c250102
基金项目: 国家自然科学基金(62473016), 北京市自然科学基金(4232048), 动态光学成像与测量全国重点实验室开放课题(2025001)资助
详细信息
    作者简介:

    李伟鹏:北京航空航天大学宇航学院副研究员. 主要研究方向为空间精密载荷振动隔离/抑制, 精密结构/机构设计及控制. E-mail: liweipeng@buaa.edu.cn

    刘泽书:北京航空航天大学宇航学院博士研究生. 主要研究方向为精密机构设计及控制, 卫星激光通信. E-mail: liuzs1@buaa.edu.cn

    包泽宇:北京航空航天大学宇航学院博士研究生. 主要研究方向为卫星制造, 激光通信. E-mail: baozeyu@buaa.edu.cn

    乔建忠:北京航空航天大学自动化学院教授. 主要研究方向为故障诊断与容错控制, 抗扰动控制和微小卫星姿态控制. E-mail: jzqiaobuaa@126.com

    朱玉凯:北京航空航天大学宇航学院副教授. 主要研究方向为抗扰动控制, 滑模控制和航天器姿态控制. 本文通信作者. E-mail: yukaizhu@buaa.edu.cn

Adaptive ADRC for the Fine Tracking System in Inter-satellite Laser Communication Based on Improved ESO

Funds: Supported by National Natural Science Foundation of China (62473016), Beijing Natural Science Foundation (4232048), and Open Fund of the State Key Laboratory of Dynamic Optical Imaging and Measurement (2025001)
More Information
    Author Bio:

    LI Wei-Peng Associate researcher at the School of Astronautics, Beihang University. His research interests include space precision load vibration isolation/suppression and precision structure/mechanism design and control

    LIU Ze-Shu Ph.D. candidate at the School of Astronautics, Beihang University. His research interests include precision mechanism design and control and satellite laser communication

    BAO Ze-Yu Ph.D. candidate at the School of Astronautics, Beihang University. His research interests include satellite manufacture and laser communication

    QIAO Jian-Zhong Professor at the School of Automation, Beihang University. His research interests include fault diagnosis and tolerant control, anti-disturbance control, and attitude control of microsatellite

    ZHU Yu-Kai Associate professor at the School of Astronautics, Beihang University. His research interests include anti-disturbance control, sliding mode control, and attitude control of spacecrafts. Corresponding author of this paper

  • 摘要: 星间激光通信中的光束指向误差会显著降低链路质量. 精跟踪系统因其高带宽特性, 主要负责对高频扰动进行实时修正. 针对精跟踪环节所面临的高频扰动, 传统自抗扰控制(ADRC)在扰动估计与补偿方面仍存在性能瓶颈. 本文考虑一种特殊的干扰形式, 并基于此构造具备频率分离能力的改进扩张状态观测器, 实现对快、慢变扰动的解耦. 在此基础上提出一种融合自适应滤波的自适应ADRC框架, 该方法在传统ADRC框架基础上, 引入并联自适应滤波器, 通过滤波器权重在线更新实现对光束指向误差的自适应抑制, 提升系统在高频干扰下的控制性能. 实验结果表明, 所提方法相比传统控制方法具有更强的扰动抑制能力.
  • 图  1  动力学模型示意图

    Fig.  1  Schematic diagram of dynamic model

    图  2  频率分离特性

    Fig.  2  Frequency decoupling characteristic

    图  3  调参流程图

    Fig.  3  Parameter tuning flowchart

    图  4  控制框图

    Fig.  4  Control block diagram

    图  5  激光通信捕跟控制算法实验平台

    Fig.  5  Experimental platform for laser communication acquisition and tracking control algorithm

    图  6  低频干扰的观测

    Fig.  6  Observation of low-frequency disturbance

    图  7  高频干扰的观测

    Fig.  7  Observation of high-frequency disturbance

    图  8  复合干扰的观测

    Fig.  8  Observation of composite disturbance

    图  9  复合干扰下慢变干扰的观测

    Fig.  9  Observation of slow-varying disturbance under composite disturbance

    图  11  复合干扰下集总干扰的观测

    Fig.  11  Observation of total disturbance under composite disturbance

    图  10  复合干扰下快变干扰的观测

    Fig.  10  Observation of fast-varying disturbance under composite disturbance

    图  12  本文方法与传统ESO对比((a)估计结果; (b)估计误差)

    Fig.  12  Comparison between the proposed method and traditional ESO ((a) Estimation results; (b) Estimation errors)

    图  13  快变干扰估计与慢变干扰估计的FRF曲线

    Fig.  13  FRF curves of fast-varying disturbance estimation and slow-varying disturbance estimation

    图  14  光束抖动抑制实验的时域响应曲线

    Fig.  14  Time-domain response curves of beam jitter suppression experiment

    图  15  不同方法的控制效果((a) $30 \sim 35$s内的功率谱密度; (b) $55 \sim 60$s内的功率谱密度)

    Fig.  15  Control effects of different methods ((a) Power spectrum density in $30 \sim 35$s; (b) Power spectrum density in $55 \sim 60$s)

    表  1  星上主要扰源及其干扰形式

    Table  1  Main disturbance sources on the satellite and their disturbance forms

    扰源 干扰形式
    反作用飞轮、控制力矩陀螺、动量轮 多频线谱和宽频噪声
    天线等驱动机构 多频线谱和宽频噪声
    三浮陀螺 宽频噪声
    磁力矩器 宽频噪声
    下载: 导出CSV

    表  2  激光通信捕跟控制算法实验平台中快反镜的参数

    Table  2  Parameters of fast steering mirror in experimental platform for laser communication acquisition and tracking control algorithm

    方向 $ a_1 $ (1/s) $ a_2 $ (1/s2) b (10−6 rad/(s2·V))
    x 1 809 $ 7.301 \times 10^6 $ $ 6.079 \times 10^6 $
    $y $ (真实器件) 1 981 $ 7.487 \times 10^6 $ $ 4.736 \times 10^6 $
    $y $ (控制器设计) 1 809 $ 7.301 \times 10^6 $ $ 6.079 \times 10^6 $
    下载: 导出CSV

    表  3  实验中使用的控制器参数

    Table  3  Parameters of controllers used in experiment

    本文方法 PID 传统LADRC FxLMS+PID
    $\sigma $ $ 2\times 10^{-6} $
    $ k_p $ 0.43 0.43 0.95 0.43
    $ k_i $ 1 339 1 339 1 339
    $ k_d $ $ 3.5 \times 10 ^{-5} $ $ 3.5 \times 10 ^{-5} $ $ -3.5 \times 10 ^{-5} $ $ 3.5 \times 10 ^{-5} $
    $ \omega_o $ 400 400
    μ $ \mathrm{1\times 10^{-6}} $ $ 5\times 10^{-8}\,(x) $, $ 3\times 10^{-6}\,(y) $
    M 128 128
    下载: 导出CSV

    表  4  改进ESO与传统ESO估计性能对比(V)

    Table  4  Comparison of estimation performance between improved and traditional ESO (V)

    最大绝对误差 平均误差 均方根误差
    传统ESO x 0.995 −0.026 0.487
    y 1.119 −0.041 0.492
    改进ESO x 1.038 −0.026 0.499
    y 1.137 −0.040 0.504
    下载: 导出CSV

    表  5  不同方法下指向误差的均方根($ 10^{-6} $rad)

    Table  5  RMS of pointing error under different methods ($ 10^{-6} $rad)

    控制方法 x y
    $ 30 \sim 35 $ s $ 55 \sim 60 $ s $ 30 \sim 35 $ s $ 55 \sim 60 $ s
    无控制 100.26 101.10 93.15 94.13
    传统LADRC 51.54 52.71 52.52 53.30
    PID 31.45 34.73 25.45 27.03
    FxLMS+PID 32.60 35.54 8.04 8.73
    本文方法 8.08 8.04 5.30 5.35
    下载: 导出CSV
  • [1] Li Z C, Guo J L, Qin T, Wang J, Cui Z G, Han P X, et al. Integrated modeling and analysis of the microvibration effects on the line-of-sight stability for the space laser communication terminal. Optical Engineering, 2024, 63(2): Article No. 024110
    [2] Hamza A S, Deogun J S, Alexander D R. Classification framework for free space optical communication links and systems. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1346−1382
    [3] Kaushal H, Kaddoum G. Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials, 2017, 19(1): 57−96
    [4] Yao Z. Jitter control for optical payload on satellites. Journal of Aerospace Engineering, 2014, 27(4): Article No. 04014005
    [5] Huang J, Xi J T, Yu Z. Study on micro-vibration isolation system design and validation for the SDLT-1 satellite of China. Journal of Vibration Engineering & Technologies, 2023, 11(8): 3879−3891
    [6] Hu Q G, Mu Y N. Influence of vibration on the coupling efficiency in spatial receiver and its compensation method. Optical Engineering, 2018, 57(4): Article No. 046105
    [7] Xie M L, Ma C W, Yao C, Huang W, Lian X Z, Feng X B, et al. Reflector control technology in space laser communication. In: Proceedings of the LIDAR Imaging Detection and Target Recognition 2017. Changchun, China: SPIE, 2017. Article No. 106050Z
    [8] Rüddenklau R, Rein F, Roubal C, Rödiger B, Schmidt C. In-orbit demonstration of acquisition and tracking on OSIRIS4CubeSat. Optics Express, 2024, 32(23): 41188−41200 doi: 10.1364/OE.537889
    [9] Baeck K, Wi J, Yoon H. Analytic pointing error evaluation on nano-satellite laser communication system. Optics Communications, 2024, 559: Article No. 130419 doi: 10.1016/j.optcom.2024.130419
    [10] Lv F R, Liu Y K, Gao S J, Wu H, Guo F. Research on bandwidth improvement of fine tracking control system in space laser communication. Photonics, 2023, 10(11): Article No. 1179 doi: 10.3390/photonics10111179
    [11] Antonello R, Branz F, Sansone F, Cenedese A, Francesconi A. High-precision dual-stage pointing mechanism for miniature satellite laser communication terminals. IEEE Transactions on Industrial Electronics, 2021, 68(1): 776−785 doi: 10.1109/TIE.2020.2972452
    [12] Sansone F, Branz F, Vettor A, Birello E, Guizzo G P, Antonello R, et al. Calibration and verification of pointing and tracking system for optical communication terminal. AIAA Journal, 2023, 61(2): 510−517 doi: 10.2514/1.J062325
    [13] Subaşımath Ö, Erol B, Altımathner B, Turan H, Baci N. ${H_{\infty}}$ controller design for the mitigation of atmospheric effects on the laser beam pointing. Transactions of the Institute of Measurement and Control, 2021, 43(8): 1786−1801 doi: 10.1177/0142331221998465
    [14] Cui Z, Qian X G, Shi H Q, Ye Z J, Wang X, Xing C W, et al. Research on noise suppression of inter-satellite laser pointing jitter. In: Proceedings of the Earth and Space: From Infrared to Terahertz (ESIT 2022). Nantong, China: SPIE, 2022. Article No. 125051B
    [15] Chang Y H, Hao G B, Liu C S. Design and characterisation of a compact 4-degree-of-freedom fast steering mirror system based on double Porro prisms for laser beam stabilization. Sensors and Actuators A: Physical, 2021, 322: Article No. 112639 doi: 10.1016/j.sna.2021.112639
    [16] Ma Y H, Zhang Z B, Zhang Z G, Liu Q, He X, Shi W B, et al. Precision beam pointing control with jitter attenuation by optical deflector exhibiting dynamic hysteresis in COIL. In: Proceedings of the XX International Symposium on High-power Laser Systems and Applications 2014. Chengdu, China: SPIE, 2014. Article No. 92551U
    [17] Watkins R J, Agrawal B N. Use of least means squares filter in control of optical beam jitter. Journal of Guidance, Control, and Dynamics, 2007, 30(4): 1116−1122 doi: 10.2514/1.26778
    [18] Yoon H, Bateman B E, Agrawal B N. Laser beam jitter control using recursive-least-squares adaptive filters. Journal of Dynamic Systems, Measurement, and Control, 2011, 133(4): Article No. 041001
    [19] Beerer M J, Yoon H, Agrawal B N. Practical adaptive filter controls for precision beam pointing and tracking with jitter attenuation. Control Engineering Practice, 2013, 21(1): 122−133 doi: 10.1016/j.conengprac.2012.09.018
    [20] Wang X, Su X Q, Liu G Z, Han J F, Wang R, Wang K D. Laser beam jitter control of the link in free space optical communication systems. Optics Express, 2021, 29(25): 41582−41599 doi: 10.1364/OE.443411
    [21] 周睿, 张强, 廖勇, 甘永东, 沈锋, 李新阳. 混合自适应滤波的光束抖动控制技术研究. 激光与光电子学进展, 2021, 58(13): Article No. 1314004 doi: 10.3788/LOP202158.1314004

    Zhou Rui, Zhang Qiang, Liao Yong, Gan Yong-Dong, Shen Feng, Li Xin-Yang. Research on beam jitter control technology base on hybrid adaptive filter. Laser & Optoelectronics Progress, 2021, 58(13): Article No. 1314004 doi: 10.3788/LOP202158.1314004
    [22] Su Y H, Han J F, Wang X, Ma C W, Wu J M. Adaptive compound control of laser beam jitter in deep-space optical communication systems. Optics Express, 2024, 32(13): 23228−23244 doi: 10.1364/OE.521520
    [23] Zhu Y K, Guo L, Qiao J Z, Li W S. An enhanced anti-disturbance attitude control law for flexible spacecrafts subject to multiple disturbances. Control Engineering Practice, 2019, 84: 274−283 doi: 10.1016/j.conengprac.2018.11.001
    [24] Yang Y J, Cui Y Y, Zhu Y K, Qiao J Z. Fixed-time refined disturbance observer-based composite control for periscope-type coarse pointing assembly. IEEE Transactions on Industrial Electronics, 2024, 71(11): 14896−14905 doi: 10.1109/TIE.2024.3376831
    [25] Yang Y J, Bao Z Y, Qiao J Z, Zhu Y K, Guo L. Refined metamodel disturbance observer-based control for coarse pointing assembly under constraints. Guidance, Navigation and Control, 2024, 4(4): Article No. 2450017 doi: 10.1142/S2737480724500171
    [26] Zhang R, Zhao K, Fang S J, Fan W T, Hai H W, Luo J, et al. Research on high-stability composite control methods for telescope pointing systems under multiple disturbances. Sensors, 2024, 24(9): Article No. 2907 doi: 10.3390/s24092907
    [27] Han J Q. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900−906 doi: 10.1109/TIE.2008.2011621
    [28] Gao Z Q. Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the American Control Conference. Denver, USA: IEEE, 2003. 4989−4996
    [29] Cui N, Liu Y, Chen X L, Wang Y. Active disturbance rejection controller of fine tracking system for free space optical communication. In: Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2013: Laser Communication Technologies and Systems. Beijing, China: SPIE, 2013. Article No. 890613
    [30] Zhou Z, Li X F, Tuo W, Wang F. Design of active disturbance rejection control with noise observer for an optical reference unit. Control Engineering Practice, 2023, 132: Article No. 105427 doi: 10.1016/j.conengprac.2022.105427
    [31] Deng J Q, Zhang L Y, Xue W C, Bao Q L, Mao Y. On active disturbance compression control by twice-extended state observer for laser pointing system. IEEE Transactions on Industrial Electronics, 2024, 71(12): 16523−16533 doi: 10.1109/TIE.2024.3392997
    [32] Hei M, Zhang L C, Zhou Q K, Lu Y F, Fan D P. Model-based design method of two-axis four-actuator fast steering mirror system. Journal of Central South University, 2015, 22(1): 150−158 doi: 10.1007/s11771-015-2505-y
    [33] 孟光, 周徐斌. 卫星微振动及控制技术进展. 航空学报, 2015, 36(8): 2609−2619 doi: 10.7527/S1000-6893.2015.0169

    Meng Guang, Zhou Xu-Bin. Progress review of satellite micro-vibration and control. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2609−2619 doi: 10.7527/S1000-6893.2015.0169
    [34] Ali M A, Eltohamy F, Abd-Elrazek A, Hanafy M E. Assessment of micro-vibrations effect on the quality of remote sensing satellites images. International Journal of Image and Data Fusion, 2023, 14(3): 243−260 doi: 10.1080/19479832.2023.2167874
    [35] 罗勇, 刘凯凯, 杨帆, 闻心怡, 黄永梅, 郭珊珊, 等. 快反镜系统滑模复合分层干扰观测补偿控制. 光电工程, 2023, 50(4): Article No. 220330 doi: 10.12086/oee.2023.220330

    Luo Yong, Liu Kai-Kai, Yang Fan, Wen Xin-Yi, Huang Yong-Mei, Guo Shan-Shan, et al. Observation and compensation control of sliding mode compound layered interference for the fast steering mirror system. Opto-Electronic Engineering, 2023, 50(4): Article No. 220330 doi: 10.12086/oee.2023.220330
    [36] Zhu S F, Huang W X, Zhao Y J, Lin X G, Dong D F, Jiang W, et al. Robust speed control of electrical drives with reduced ripple using adaptive switching high-order extended state observer. IEEE Transactions on Power Electronics, 2022, 37(2): 2009−2020
    [37] Zhuo S R, Gaillard A, Xu L C, Bai H, Paire D, Gao F. Enhanced robust control of a DC-DC converter for fuel cell application based on high-order extended state observer. IEEE Transactions on Transportation Electrification, 2020, 6(1): 278−287 doi: 10.1109/TTE.2020.2974582
    [38] Wang L, Li X T, Zhou Z M, Liu Y Z, Yang Z Y, Zhang S T, et al. Disturbance observation and suppression in an airborne electro-optical stabilized platform based on a generalized high-order extended state observer. Sensors, 2024, 24(11): Article No. 3629 doi: 10.3390/s24113629
    [39] Li L, Wang L, Yuan L, Zheng R, Wu Y P, Sui J, et al. Micro-vibration suppression methods and key technologies for high-precision space optical instruments. Acta Astronautica, 2021, 180: 417−428 doi: 10.1016/j.actaastro.2020.12.054
    [40] 陈增强, 孙明玮, 杨瑞光. 线性自抗扰控制器的稳定性研究. 自动化学报, 2013, 39(5): 574−580

    Chen Zeng-Qiang, Sun Ming-Wei, Yang Rui-Guang. On the stability of linear active disturbance rejection control. Acta Automatica Sinica, 2013, 39(5): 574−580
    [41] Rey Vega L, Rey H, Benesty J. Stability analysis of adaptive filters with regression vector nonlinearities. Signal Processing, 2011, 91(8): 2091−2100 doi: 10.1016/j.sigpro.2011.03.018
    [42] Miklosovic R, Radke A, Gao Z Q. Discrete implementation and generalization of the extended state observer. In: Proceedings of the American Control Conference. Minneapolis, USA: IEEE, 2006. Article No. 6
    [43] 黄博妍, 常琳, 马亚平, 孙金玮, 魏国. 一种应对非平稳频率失调的窄带主动噪声控制系统. 自动化学报, 2015, 41(1): 186−193 doi: 10.16383/j.aas.2015.c130797

    Huang Bo-Yan, Chang Lin, Ma Ya-Ping, Sun Jin-Wei, Wei Guo. A new narrowband ANC system against nonstationary frequency mismatch. Acta Automatica Sinica, 2015, 41(1): 186−193 doi: 10.16383/j.aas.2015.c130797
    [44] Li S H, Won H, Fu X G, Fairbank M, Wunsch D C, Alonso E. Neural-network vector controller for permanent-magnet synchronous motor drives: Simulated and hardware-validated results. IEEE Transactions on Cybernetics, 2020, 50(7): 3218−3230 doi: 10.1109/TCYB.2019.2897653
    [45] Tsuchiya N, Gibson S, Tsao T C, Verhaegen M. Receding-horizon adaptive control of laser beam jitter. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 227−237 doi: 10.1109/TMECH.2015.2427379
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  97
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-13
  • 录用日期:  2025-11-06
  • 网络出版日期:  2025-12-04
  • 刊出日期:  2025-12-20

目录

    /

    返回文章
    返回