• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云−边−端协同下考虑多车影响的混行车群集中式协同控制

黄帅 冯雨航 郑太雄 李永福

黄帅, 冯雨航, 郑太雄, 李永福. 云−边−端协同下考虑多车影响的混行车群集中式协同控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240775
引用本文: 黄帅, 冯雨航, 郑太雄, 李永福. 云−边−端协同下考虑多车影响的混行车群集中式协同控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240775
Huang Shuai, Feng Yu-Hang, Zheng Tai-Xiong, Li Yong-Fu. Centralized cooperative control of mixed vehicle groups considering multi-vehicle influence under cloud-edge-end collaboration. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240775
Citation: Huang Shuai, Feng Yu-Hang, Zheng Tai-Xiong, Li Yong-Fu. Centralized cooperative control of mixed vehicle groups considering multi-vehicle influence under cloud-edge-end collaboration. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240775

云−边−端协同下考虑多车影响的混行车群集中式协同控制

doi: 10.16383/j.aas.c240775 cstr: 32138.14.j.aas.c250775
基金项目: 中国博士后科学基金(2025MD774185), 重庆市自然科学基金(CSTB2024NSCQ-MSX0666), 重庆市教委科学技术研究项目(KJQN202400635, KJZD-M202300602), 重庆邮电大学博士启动基金(A2024-36), 国家重点研发计划(2023YFB2504702), 国家自然科学基金(62273067)资助
详细信息
    作者简介:

    黄帅:重庆邮电大学人工智能学院讲师. 主要研究方向为智能车辆与智慧交通, 具身智能机器人, 群体智能协同感知、决策与控制. E-mail: huangs316@163.com

    冯雨航:重庆邮电大学集成电路学院硕士研究生. 主要研究方向为智能驾驶与智慧交通. E-mail: fyh010110@163.com

    郑太雄:重庆邮电大学集成电路学院教授, 主要研究方向为工业智能感知与控制. 本文通信作者. E-mail: zhengtx@cqupt.edu.cn

    李永福:重庆邮电大学自动化学院教授. 主要研究方向为智能网联汽车和空地协同控制. E-mail: liyongfu@cqupt.edu.cn

Centralized Cooperative Control of Mixed Vehicle Groups Considering Multi-vehicle Influence under Cloud-edge-end Collaboration

Funds: Supported by China Postdoctoral Science Foundation (2025MD774185), Chongqing Natural Science Foundation (CSTB2024NSCQ-MSX0666), Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202400635, KJZD-M202300602), Doctoral Startup Foundation of Chongqing University of Posts and Telecommunications (A2024-36), National Key Research and Development Program of China (2023YFB2504702), and National Natural Science Foundation of China (62273067)
More Information
    Author Bio:

    HUANG Shuai Lecturer at the College of Artificial Intelligence, Chongqing University of Posts and Telecommunications. His research interests include intelligent vehicles and intelligent transportation, embodied intelligent robots, swarm intelligence collaborative perception, and decision-making and control

    FENG Yu-Hang Master student at the College of Integrated Circuits, Chongqing University of Posts and Telecommunications. His research interests include intelligent driving and intelligent transportation

    ZHENG Tai-Xiong Professor at the College of Integrated Circuits, Chongqing University of Posts and Telecommunications. His research interests include industrial intelligent sensing and control. Corresponding author of this paper

    LI Yong-Fu Professor at the College of Automation, Chongqing University of Posts and Telecommunications. His research interests include intelligent connected vehicles and air-ground cooperative control

  • 摘要: 随着车联网技术的进步, 由网联人驾车与网联自动车组成的混行车群规模正逐渐增大, 导致混行车群间的协同与交互难度增加, 进而影响混行车群行驶状态的一致性. 为解决此问题, 提出一种云−边−端协同下考虑多车影响的混行车群集中式协同控制方法, 以提高混行车群协同行驶效率. 首先, 为有效处理和分析较大规模混行车群产生的海量异构信息数据, 设计混合交通场景下云−边−端协同架构. 然后, 考虑网联人驾车前方两辆车及紧邻后车状态信息的影响, 以及网联自动车前方所有车辆及紧邻后车状态信息的影响, 分别在云控平台建立基于分子动力学的网联自动车和固定权重的网联人驾车协同行驶模型. 再者, 根据混行车群间动态信息影响关系, 设计基于云−边−端协同架构的混行车群集中式协同控制方法, 并利用稳定性和串稳定性理论获得混行车群协同行驶一致性条件. 最后, 通过对比仿真实验验证了本文所提控制方法的有效性.
  • 图  1  新型混合交通场景

    Fig.  1  Novel mixed traffic scenario

    图  2  云−边−端协同架构

    Fig.  2  Cloud-edge-end collaborative architecture

    图  3  云−边−端协同下考虑多车影响的混行车群集中式协同控制机理

    Fig.  3  Centralized cooperative control mechanism for mixed vehicle groups considering multi-vehicle influence under cloud-edge-end collaboration

    图  4  无通信时延下混行车群采用FVD模型时车辆的状态变化曲线

    Fig.  4  State variation curves of vehicles within the mixed vehicle groups using FVD model without communication delay

    图  5  无通信时延下混行车群采用FVD模型时跟随车辆与前车的状态差值变化曲线

    Fig.  5  State error variation curves between following vehicles and preceding vehicles within the mixed vehicle groups using FVD model without communication delay

    图  6  无通信时延下混行车群采用IDM模型时车辆的状态变化曲线

    Fig.  6  State variation curves of vehicles within the mixed vehicle groups using IDM model without communication delay

    图  7  无通信时延下混行车群采用IDM模型时跟随车辆与前车的状态差值变化曲线

    Fig.  7  State error variation curves between following vehicles and preceding vehicles within the mixed vehicle groups using IDM model without communication delay

    图  8  无通信时延下混行车群采用MFRVI-CDM模型时车辆的状态变化曲线

    Fig.  8  State variation curves of vehicles within the mixed vehicle groups using MFRVI-CDM model without communication delay

    图  9  无通信时延下混行车群采用MFRVI-CDM模型时跟随车辆与前车的状态差值变化曲线

    Fig.  9  State error variation curves between following vehicles and preceding vehicles within the mixed vehicle groups using MFRVI-CDM model without communication delay

    图  10  有通信时延下混行车群采用MFRVI-CDM模型时车辆的状态变化曲线

    Fig.  10  State variation curves of vehicles within the mixed vehicle groups using MFRVI-CDM model with communication delay

    图  11  有通信时延情况下混行车群采用MFRVI-CDM模型时跟随车辆与前车的状态差值变化曲线

    Fig.  11  State error variation curves between following vehicles and preceding vehicles within the mixed vehicle groups using MFRVI-CDM model with communication delay

    图  12  头车扰动情况下采用MFRVI-CDM模型时车辆的状态变化曲线

    Fig.  12  State variation curves of vehicles using MFRVI-CDM model with disturbance of the leader vehicle

    图  13  CAVs渗透率为0.2时采用MFRVI-CDM模型的车辆状态变化曲线

    Fig.  13  State variation curves of vehicles using MFRVI-CDM model with a CAV penetration rate of 0.2

    图  14  CAVs渗透率为0.5时采用MFRVI-CDM模型的车辆状态变化曲线

    Fig.  14  State variation curves of vehicles using MFRVI-CDM model with a CAV penetration rate of 0.5

    图  15  CAVs渗透率为0.8时采用MFRVI-CDM模型的车辆状态变化曲线

    Fig.  15  State variation curves of vehicles using MFRVI-CDM model with a CAV penetration rate of 0.8

    图  16  不同CAVs渗透率下采用三种模型的混行车群状态达到一致稳定所需时间

    Fig.  16  Time required for mixed group state to reach consistent stability using three models under different CAV penetration rates

    表  1  初始参数设置

    Table  1  Initial parameter settings

    参数参数
    $v_{\text{max}}$$18\ \text{m/s}$$v_{\text{des}}$$12\ \text{m/s}$
    $a_{\text{max}}$$4\ \text{m/s}^2$$d_{\text{des}}$$26\ \text{m}$
    $s_0$$2\ \text{m}$$\Delta t$$0.01\ \text{s}$
    $len$$4\ \text{m}$$TH$$50\ \text{s}$
    下载: 导出CSV

    表  2  异质车辆控制输入参数设置

    Table  2  Control input parameter settings for heterogeneous vehicles

    CAVs参数HVs参数
    $\alpha_c$$0.49$$\alpha_h$$0.51$
    $\beta_c$$0.03$$\beta_h$$0.03$
    $\gamma_c$$2.36$$\gamma_h$$2.42$
    $\mu_c$$0.32$$\mu_h$$0.32$
    $\rho_{c1}$$0.97$$\rho_{h1}$$0.84$
    $\rho_{c2}$$0.03$$\rho_{h2}$$0.04$
    $\zeta$$0.03$$\xi$$0.32$
    下载: 导出CSV
  • [1] Feng W H, Wang B H. Stability Analysis and Delayed Feedback Control for Platoon of Connected Automated Vehicles with V2X and V2V Infrastructure. Physica A: Statistical Mechanics and its Applications, 2025, 658: 130258 doi: 10.1016/j.physa.2024.130258
    [2] Pala S, Katwe M, Singh K, Tsiftsis T, Li C. Robust Transmission Design for RIS-Aided Full-Duplex-RSMA V2X Communications via Multi-Agent DRL. IEEE Transactions on Vehicular Technology, 2025, 74(1): 761−775 doi: 10.1109/TVT.2024.3453253
    [3] Xu Z H, Xu S Y, Ding H X, Xu R T. An ISAC-Based Beam Tracking Scheme Against Inter-Region Interference for the Multi-RSU V2I Scenario. IEEE Transactions on Vehicular Technology, 2025, 74(3): 4257−4272 doi: 10.1109/TVT.2024.3488089
    [4] Kong W W, Zhu W Z, Li K Q, Zhang Y H, Luo Y H, Xu M C. Robust Distributed Model Predictive Control of Multi-Platoon Leader in Mixed Traffic. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(1): 169−181 doi: 10.1109/TITS.2024.3482725
    [5] Li C L, Chai L, Jiang K, Zhang Y, Liu J, Wan S H. DNN Partition and Offloading Strategy with Improved Particle Swarm Genetic Algorithm in VEC. IEEE Transactions on Intelligent Vehicles, 2024, 9(9): 5532−5542 doi: 10.1109/TIV.2023.3346506
    [6] Ruan T C, Chen Y J, Han G Y, Wang J, Li X P, Jiang R, et al. Cooperative Adaptive Cruise Platoon Controller Design Considering Switching Control and Stability. Transportation Research Part C: Emerging Technologies, 2025, 172: 105024 doi: 10.1016/j.trc.2025.105024
    [7] Zheng Y, Zhang Y, Qu X, Li S, Ran B. Developing Platooning Systems of Connected and Automated Vehicles with Guaranteed Stability and Robustness Against Degradation Due to Communication Disruption. Transportation Research Part C: Emerging Technologies, 2024, 168: 104768 doi: 10.1016/j.trc.2024.104768
    [8] 李永福, 何昌鹏, 朱浩, 郑太雄. 通信延时环境下异质网联车辆队列非线性纵向控制. 自动化学报, 2021, 47(12): 2841−2856 doi: 10.16383/j.aas.c190442

    Li Yong-Fu, He Chang-Peng, Zhu Hao, Zheng Tai-Xiong. Nonlinear Longitudinal Control for Heterogeneous Connected Vehicle Platoon in the Presence of Communication Delay. Acta Automatica Sinica, 2021, 47(12): 2841−2856 doi: 10.16383/j.aas.c190442
    [9] Wang B, Luo Y G, Zhong Z H, Li K Q. Risk Reduction for Safety of the Intended Functionality of CACC with Complex Uncertainties: A Cooperative Robust Non-Fragile Fault Tolerant Strategy. Transportation research part C: emerging technologies, 2022, 144: 103885 doi: 10.1016/j.trc.2022.103885
    [10] Cong X Y, Yang B, Gao F K, Chen C L, Guan X P, Tang Y L. A Bilevel Virtual Platoon Based Coordination Framework for CAVs at Unsignalized Intersection. IEEE Transactions on Vehicular Technology, 2024, 74(3): 4019−4032
    [11] 朱永薪, 李永福, 朱浩, 于树友. 通信延时环境下基于观测器的智能网联车辆队列分层协同纵向控制. 自动化学报, 2023, 49(08): 1785−1798 doi: 10.16383/j.aas.c210311

    Zhu Yong-Xin, Li Yong-Fu, Zhu Hao, Yu Shu-You. Observer-based longitudinal control for connected and automated vehicles platoon subject to communication delay. Acta Automatica Sinica, 2023, 49(08): 1785−1798 doi: 10.16383/j.aas.c210311
    [12] Huang S, Sun D H, Zhao M, Zhang Y C, Liu W N, Liao X Y. SFM-Based Modeling and String Stability Analysis of Mixed Vehicle Groups with Distributed Cooperative Method from Cyber-Physical Perspective. Nonlinear Dynamics, 2023, 111(5): 4395−4423 doi: 10.1007/s11071-022-08057-3
    [13] Huang S, Sun D H, Zhao M. Distributed MPC-Based Hierarchical Cooperative Control for Mixed Vehicle Groups With T-CPS in the Vicinity of Traffic Signal Light. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 8003−8016 doi: 10.1109/TITS.2024.3390763
    [14] Khan A, Javeed M A, Hassan W U, Niazi A U K, Ahmed S, et al. Stability Analysis and Resilient Communication in Connected Vehicle Platooning: Addressing Input Communication Delays and Disruptions Through Lyapunov Analysis and Event-Triggered Control. Alexandria Engineering Journal, 2025, 116: 342−350 doi: 10.1016/j.aej.2024.12.063
    [15] Pachat J, Karat N S, Mahesh A A, PP D, Rajan B S. Index Coded PSK Modulation in Vehicle to Vehicle Communication. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4753−4766 doi: 10.1109/TVT.2021.3073788
    [16] Li Y F, Chen B J, Zhao H, Peeta S, Hu S, Wang Y B. A Car-Following Model for Connected and Automated Vehicles with Heterogeneous Time Delays Under Fixed and Switching Communication Topologies. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14846−14858 doi: 10.1109/TITS.2021.3134419
    [17] Lee S H. A Spatiotemporal Spacing Policy and String Stability for Heterogenous Vehicle Platooning. IEEE Transactions on Vehicular Technology, 2024, 73(11): 16328−16340 doi: 10.1109/TVT.2024.3423474
    [18] Li Y, Pan B, Chen Z B, Xing L. Developing a Dynamic Speed Control System for Mixed Traffic Flow to Reduce Collision Risks Near Freeway Bottlenecks. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12560−12581 doi: 10.1109/TITS.2023.3287269
    [19] Mousavi S S, Bahrami S, Kouvelas A. Synthesis of Output-Feedback Controllers for Mixed Traffic Systems in Presence of Disturbances and Uncertainties. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(6): 6450−6462
    [20] Yang J S, Zhao D Z, Lan J L, Xue S B, Zhao W J, Tian D X. Eco-Driving of General Mixed Platoons with CAVs and HDVs. IEEE Transactions on Intelligent Vehicles, 2022, 8(2): 1190−1203
    [21] Wang Z W, Xue Y, Liu L H, Zhang H J, Qu C H, Fang C. Multi-Agent DRL-Controlled Connected and Automated Vehicles in Mixed Traffic with Time Delays. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 17676−17688 doi: 10.1109/TITS.2024.3435036
    [22] Nie Z F, Farzaneh H. Human-Inspired Anticipative Cruise Control for Enhancing Mixed Traffic Flow. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 17335−17351 doi: 10.1109/TITS.2024.3438211
    [23] 黄帅, 孙棣华, 赵敏. 多切入机制下基于信息物理系统的混合车群协同控制. 控制与决策, 2024, 39(1): 17−25

    Huang Shuai, Sun Di-Hua, Zhao Min. CPS-based Mixed Vehicle Group Cooperative Control with Multiple Cutin Maneuvers. Control and Decision, 2024, 39(1): 17−25
    [24] Guo S C, Orosz G, Molnar T G. Connected Cruise and Traffic Control for Pairs of Connected Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12648−12658 doi: 10.1109/TITS.2023.3285852
    [25] Gong Y, Zhu W X. Robust Control Scheme for the Mixed Platoon System with Time-Varying Information Topologies and Inaccurate State Information. Nonlinear Dynamics, 2024, 112(24): 22057−22085 doi: 10.1007/s11071-024-10190-0
    [26] Wang S Y, Yu B, Wu M Y. MVCM Car-Following Model for Connected Vehicles and Simulation-Based Traffic Analysis in Mixed Traffic Flow. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5267−5274 doi: 10.1109/TITS.2021.3052818
    [27] Qiu T, Chi J C, Zhou X B, Ning Z L, Atiquzzaman M, Wu D O. Edge Computing in Industrial Internet of Things: Architecture, Advances and Challenges. IEEE Communications Surveys and Tutorials, 2020, 22(4): 2462−2488 doi: 10.1109/COMST.2020.3009103
    [28] Xun Y J, Qin J M, Liu J J. Deep Learning Enhanced Driving Behavior Evaluation Based on Vehicle-Edge-Cloud Architecture. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6172−6177 doi: 10.1109/TVT.2021.3078482
    [29] Arthurs P, Gillam L, Krause P, Wang N, Halder K, Mouzakitis A. A Taxonomy and Survey of Edge Cloud Computing for Intelligent Transportation Systems and Connected Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6206−6221 doi: 10.1109/TITS.2021.3084396
    [30] Song T, Zhu W X, Su S B, Wang W W. Distributed “End-Edge-Cloud” Structural Car-Following Control System for Intelligent Connected Vehicle Using Sliding Mode Strategy. Communications in Nonlinear Science and Numerical Simulation, 2023, 126: 107468 doi: 10.1016/j.cnsns.2023.107468
    [31] An J X, Cao L, Wang Y X, Jadoon A K, Wang S H. Adaptive Fault-Tolerant Optimized Platoon Cloud Tracking Control for Heterogeneous Vehicles Via Dual Learning Mechanism. IEEE Transactions on Automation Science and Engineering, 2024, 22: 4382−4393
    [32] Zhao J X, Ma Y L, Dai L, Sun Z Q, Xia Y Q. Cloud-Edge Cooperative Distributed MPC With Event-Triggered Switching Strategy for Heterogeneous Vehicle Platoon. IEEE Transactions on Vehicular Technology, 2024, 73(10): 14425−14437 doi: 10.1109/TVT.2024.3405625
    [33] Wang Z H, Ge H X, Dai P P, Liu H Q. Modeling Non-Equilibrium Mixed Traffic Flow in Composite Road Environments with “End-Edge-Cloud” Structure. Physica A: Statistical Mechanics and its Applications, 2024, 658: 130263
    [34] Jiang R, WU Q S, ZHU Z J. Full Velocity Difference Model for a Car-Following Theory. Physical Review E, 2001, 64(1): 017101 doi: 10.1103/PhysRevE.64.017101
    [35] Wang J Q, WU J, Li Y. Concept, Principle and Modeling of Driving Risk Field Based on Driver-Vehicle-Road Interaction. China Journal of Highway and Transport, 2016, 29(1): 105−114
    [36] Wang M. Infrastructure Assisted Adaptive Driving to Stabilise Heterogeneous Vehicle Strings. Transportation Research Part C: Emerging Technologies, 2018, 91: 276−295 doi: 10.1016/j.trc.2018.04.010
    [37] Punzo V, Zheng Z D, Montanino M. About Calibration of Car-Following Dynamics of Automated and Human-Driven Vehicles: Methodology, Guidelines and Codes. Transportation Research Part C: Emerging Technologies, 2021, 128: 103165 doi: 10.1016/j.trc.2021.103165
    [38] 宗芳, 王猛, 贺正冰. 考虑多车影响的分子动力学智能网联跟驰模型. 交通运输系统工程与信息, 2022, 22(1): 37−48 doi: 10.16097/j.cnki.1009-6744.2022.01.005

    Zhong Fang, Wang Meng, He Zheng-Bing. AMolecular Dynamics-based Car-following Model for Connected and Automated Vehicles Considering Impact of Multiple Vehicles. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 37−48 doi: 10.16097/j.cnki.1009-6744.2022.01.005
    [39] Dragomir S S, Pearce C E. Selected Topics on Hermite-Hadamard Inequalities and Applications. Science direct working paper, 2003(S1574-0358): 04
    [40] Rajamani R. Vehicle dynamics and control[M]. Springer Science and Business Media, 2011
    [41] Xing H T, Ploeg J, Nijmeijer H. Padé Approximation of Delays in Cooperative ACC Based on String Stability Requirements. IEEE Transactions on Intelligent Vehicles, 2016, 1(3): 277−286 doi: 10.1109/TIV.2017.2662482
    [42] Treiber M, Hennecke A, Helbing D. Congested Traffic States in Empirical Observations and Microscopic Simulations. Physical review E, 2000, 62(2): 1805 doi: 10.1103/PhysRevE.62.1805
  • 加载中
计量
  • 文章访问数:  9
  • HTML全文浏览量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-05
  • 录用日期:  2025-10-23
  • 网络出版日期:  2025-12-15

目录

    /

    返回文章
    返回