| 
	                    [1]
	                 | 
				
					Arasaratnam I, Haykin S. Cubature Kalman filter. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269
					 | 
			
		
				| 
	                    [2]
	                 | 
				
					[2] Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter. Automatica, 2013, 49(2): 510-518
					 | 
			
		
				| 
	                    [3]
	                 | 
				
					Zhang Yong-Gang, Huang Yu-Long, Wu Zhe-Min, Li Ning. A high order unscented Kalman filtering method. Acta Automatica Sinica, 2014, 40(5): 838-848(张勇刚, 黄玉龙, 武哲民, 李宁. 一种高阶无迹卡尔曼滤波方法. 自动化学报, 2014, 40(5): 838-848)
					 | 
			
		
				| 
	                    [4]
	                 | 
				
					[4] Jia B, Xin M, Cheng Y. Sparse-grid quadrature nonlinear filtering. Automatica, 2012, 48(2): 327-341
					 | 
			
		
				| 
	                    [5]
	                 | 
				
					[5] Dunk J, Straka O, imandl M. Stochastic integration filter. IEEE Transactions on Automatic Control, 2013, 58(6): 1561-1566
					 | 
			
		
				| 
	                    [6]
	                 | 
				
					[6] Zhang X C. A novel cubature Kalman filter for nonlinear state estimation. In: Proceedings of the 52nd IEEE Conference on Decision and Control. Florence, Italy: IEEE, 2013. 7797-7802
					 | 
			
		
				| 
	                    [7]
	                 | 
				
					[7] Wang S Y, Feng J C, Tse C K. Spherical simplex-radial cubature Kalman filter. IEEE Signal Processing Letters, 2014, 21(1): 43-46
					 | 
			
		
				| 
	                    [8]
	                 | 
				
					Wang Lu, Li Guang-Chun, Qiao Xiang-Wei, Wang Zhao-Long, Ma Tao. An adaptive UKF algorithm based on maximum likelihood principle and expectation maximization algorithm. Acta Automatica Sinica, 2012, 38(7): 1200-1210(王璐, 李光春, 乔相伟, 王兆龙, 马涛. 基于极大似然准则和最大期望算法的自适应UKF算法. 自动化学报, 2012, 38(7): 1200-1210)
					 | 
			
		
				| 
	                    [9]
	                 | 
				
					[9] Chang L B, Hu B Q, Li A, Qin F J. Transformed unscented Kalman Filter. IEEE Transactions on Automatic Control, 2013, 58(1): 252-257
					 | 
			
		
				| 
	                    [10]
	                 | 
				
					Schn T B, Wills A, Ninness B. System identification of nonlinear state-space models. Automatica, 2011, 47(1): 39-49
					 | 
			
		
				| 
	                    [11]
	                 | 
				
					Tichavsky P, Muravchik C H, Nehorai A. Posterior Cram'er-Rao bounds for discrete-time nonlinear filtering. IEEE Transactions on Signal Processing, 1998, 46(5): 1386-1396
					 | 
			
		
				| 
	                    [12]
	                 | 
				
					Zuo L, Niu R X, Varshney P K. Conditional posterior Cramr-Rao lower bounds for nonlinear sequential Bayesian estimation. IEEE Transactions on Signal Processing, 2011, 59(1): 1-14
					 | 
			
		
				| 
	                    [13]
	                 | 
				
					Zheng Y J, Ozdemir O, Niu R X, Varshney P K. New conditional posterior Cramr-Rao lower bounds for nonlinear sequential Bayesian estimation. IEEE Transactions on Signal Processing, 2012, 60(10): 5549-5556
					 | 
			
		
				| 
	                    [14]
	                 | 
				
					Zuo L. Conditional Posterior Cramr-Rao Lower Bound and Distributed Target Tracking in Sensor Networks [Ph.D. dissertation], Syracuse University, Syracuse, USA, 2011.
					 | 
			
		
				| 
	                    [15]
	                 | 
				
					Yang F W, Wang Z D, Feng G, Liu X H. Robust filtering with randomly varying sensor delay: the finite-horizon case. IEEE Transactions on Circuits and Systems  I, 2009, 56(3): 664-672
					 | 
			
		
				| 
	                    [16]
	                 | 
				
					Chen S J, Li Y Y, Qi G Q, Sheng A D. Adaptive Kalman estimation in target tracking mixed with random one-step delays, stochastic-bias measurements, and missing measurements. Discrete Dynamics in Nature and Society, 2013, 2013: Article ID 716915
					 | 
			
		
				| 
	                    [17]
	                 | 
				
					Hermoso-Carazo A, Linares-Prez J. Extended and unscented filtering algorithms using one-step randomly delayed observations. Applied Mathematics and Computation, 2007, 190(2): 1375-1393
					 | 
			
		
				| 
	                    [18]
	                 | 
				
					Hermoso-Carazo A, Linares-Prez J. Unscented filtering algorithm using two-step randomly delayed observations in nonlinear systems. Applied Mathematical Modelling, 2009, 33(9): 3705-3717
					 | 
			
		
				| 
	                    [19]
	                 | 
				
					Wang X X, Liang Y, Pan Q, Zhao C H. Gaussian filter for nonlinear systems with one-step randomly delayed measurements. Automatica, 2013, 49(4): 976-986
					 | 
			
		
				| 
	                    [20]
	                 | 
				
					Wang X X, Pan Q, Liang Y, Yang F. Gaussian smoothers for nonlinear systems with one-step randomly delayed measurements. IEEE Transactions on Automatic Control, 2013, 58(7): 1828-1835
					 | 
			
		
				| 
	                    [21]
	                 | 
				
					Sinopoli B, Schenato L, Franceschetti M, Poolla K, Jordan M I, Sastry S S. Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control, 2004, 49(9): 1453-1461
					 | 
			
		
				| 
	                    [22]
	                 | 
				
					Zhou T. Robust recursive state estimation with random measurements droppings. available at arXiv: 1401.4020v1 [cs.SY], 2014.
					 | 
			
		
				| 
	                    [23]
	                 | 
				
					Ray A. Output feedback control under randomly varying distributed delays. Journal of Guidance, Control, and Dynamics, 1994, 17(4): 701-711
					 | 
			
		
				| 
	                    [24]
	                 | 
				
					Horn R, Johnson C R. Matrix Analysis. New York: Cambridge University Press, 1985.
					 | 
			
		
				| 
	                    [25]
	                 | 
				
					Ito K, Xiong K Q. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927
					 | 
			
		
				| 
	                    [26]
	                 | 
				
					Bucy R S, Senne K D. Digital synthesis of non-linear filters. Automatica, 1971, 7(3): 287-298
					 | 
			
		
				| 
	                    [27]
	                 | 
				
					Dunik J, Simandl M, Straka O. Unscented Kalman filter: aspects and adaptive setting of scaling parameter. IEEE Transactions on Automatic Control, 2012, 57(9): 2411-2416
					 | 
			
		
				| 
	                    [28]
	                 | 
				
					Li W L, Jia Y M. H filtering for a class of nonlinear discrete-time systems based on unscented transform. Signal Processing, 2010, 90(12): 3301-3307
					 | 
			
		
				| 
	                    [29]
	                 | 
				
					Jia B, Xin M. Sparse-grid quadrature H filter for discrete-time systems with uncertain noise statistics. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1626-1636
					 |