[1] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422 doi: 10.1109/TPAMI.2011.239
[2] 孙红光. 基于小波分析的军事目标识别及跟踪方法研究[博士学位论文], 长春理工大学, 中国, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10186-2009201547.htm

Sun Hong-Guang. The Study of Military Affairs Target Recognition and Tracking Method Based on Wavelet Analysis[Ph.D. dissertation], Changchun University of Science and Technology, China, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10186-2009201547.htm
[3] Rautaray S S, Agrawal A. Vision based hand gesture recognition for human computer interaction:a survey. Artificial Intelligence Review, 2015, 43(1):1-54 doi: 10.1007/s10462-012-9356-9
[4] Thakoor N S, An L, Bhanu B, Sunderrajan S, Manjunath B S. People tracking in camera networks:three open questions. Computer, 2015, 48(3):78-86 doi: 10.1109/MC.2015.83
[5] Ess A, Schindler K, Leibe B, Van Gool L. Object detection and tracking for autonomous navigation in dynamic environments. The International Journal of Robotics Research, 2010, 29(14):1707-1725 doi: 10.1177/0278364910365417
[6] Dinh T B, Vo N, Medioni G. Context tracker:exploring supporters and distracters in unconstrained environments. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO, USA:IEEE, 2011. 1177-1184 http://dl.acm.org/citation.cfm?id=2191959
[7] Choi W. Near-online multi-target tracking with aggregated local flow descriptor. In:Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:IEEE, 2015. 3029-3037
[8] Alismail H, Browning B, Lucey S. Robust tracking in low light and sudden illumination changes. In:Proceedings of the 4th International Conference on 3D Vision (3DV). Stanford, CA, USA:IEEE, 2016. 389-398 https://www.computer.org/csdl/proceedings/3dv/2016/5407/00/5407a389-abs.html
[9] 王江峰. 基于轨迹片段关联的目标跟踪与事件检测方法研究[博士学位论文], 国防科学技术大学, 中国, 2011. http://cdmd.cnki.com.cn/Article/CDMD-90002-1012020821.htm

Wang Jiang-Feng. Researches on Object Tracking and Event Detection Based on Tracklet Association[Ph.D. dissertation], National University of Defense Technology, China, 2011. http://cdmd.cnki.com.cn/Article/CDMD-90002-1012020821.htm
[10] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507 doi: 10.1126/science.1127647
[11] Le N, Heili A, Odobez J M. Long-term time-sensitive costs for CRF-based tracking by detection. In:European Conference on Computer Vision. Amsterdam, The Netherlands:Springer International Publishing, 2016. 43-51
[12] Lan X S, Xiong Z W, Zhang W, Li S X, Chang H X, Zeng W J. A super-fast online face tracking system for video surveillance. In:Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS). Montreal, QC, Canada:IEEE, 2016. 1998-2001 http://ieeexplore.ieee.org/document/7538968/
[13] Huang C H, Allain B, Franco J S, Navab N, Ilic S, Boyer E. Volumetric 3D tracking by detection. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 3862-3870 https://www.computer.org/csdl/proceedings/cvpr/2016/8851/00/8851d862-abs.html
[14] 尹宏鹏, 陈波, 柴毅, 刘兆栋.基于视觉的目标检测与跟踪综述.自动化学报, 2016, 42(10):1466-1489 http://www.aas.net.cn/CN/abstract/abstract18935.shtml

Yin Hong-Peng, Chen Bo, Chai Yi, Liu Zhao-Dong. Vision-based object detection and tracking:a review. Acta Automatica Sinica, 2016, 42(10):1466-1489 http://www.aas.net.cn/CN/abstract/abstract18935.shtml
[15] Wang X Y, Han T X, Yan S C. An HOG-LBP human detector with partial occlusion handling. In:Proceedings of the 12th International Conference on Computer Vision (ICCV). Kyoto, Japan:IEEE, 2009. 32-39 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5459207
[16] Cong Y, Liu W Y, Zhang Y L, Liang H. The research of video tracking based on improved SIFT algorithm. In:Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation (ICMA). Harbin, China:IEEE, 2016. 1703-1707 http://ieeexplore.ieee.org/document/7558820/
[17] Dewan M A A, Granger E, Marcialis G L, Sabourin R, Roli F. Adaptive appearance model tracking for still-to-video face recognition. Pattern Recognition, 2016, 49:129-151 doi: 10.1016/j.patcog.2015.08.002
[18] 黄凯奇, 陈晓棠, 康运锋, 谭铁牛.智能视频监控技术.计算机学报, 2015, 38(6):1093-1118 doi: 10.11897/SP.J.1016.2015.01093

Huang Kai-Qi, Chen Xiao-Tang, Kang Yun-Feng, Tan Tie-Niu. Intelligent visual surveillance:a review. Chinese Journal of Computers, 2015, 38(6):1093-1118 doi: 10.11897/SP.J.1016.2015.01093
[19] 王坤峰, 苟超, 段艳杰, 林懿伦, 郑心湖, 王飞跃.生成式对抗网络GAN的研究进展与展望.自动化学报, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml

Wang Kun-Feng, Gou Chao, Duan Yan-Jie, Lin Yi-Lun, Zheng Xin-Hu, Wang Fei-Yue. Generative adversarial networks:the state of the art and beyond. Acta Automatica Sinica, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml
[20] Hua K L, Sari I N, Yeh M C. Human pose tracking using online latent structured support vector machine. In:Proceedings of the 23rd International Conference on Multimedia Modeling. Reykjavik, Iceland:Springer, 2017. 626-637 https://www.researchgate.net/publication/311992762_Human_Pose_Tracking_Using_Online_Latent_Structured_Support_Vector_Machine
[21] Xiang X Z, Bao W L, Tang H W, Li J J, Wei Y M. Vehicle detection and tracking for gas station surveillance based on AdaBoosting and optical flow. In:Proceedings of the 12th World Congress on Intelligent Control and Automation (WCICA). Guilin, China:IEEE, 2016. 818-821 http://ieeexplore.ieee.org/document/7578324/
[22] 缪源. 图像匹配算法的研究[硕士学位论文], 合肥工业大学, 中国, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10359-1013377541.htm

Miao Yuan. Research of Image Matching Algorithm[Master dissertation], Hefei University of Technology, China, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10359-1013377541.htm
[23] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324 doi: 10.1109/5.726791
[24] 陆宗骐.图象处理领域轮廓跟踪及应用.中国计算机用户, 1994, (10):49-52 http://d.wanfangdata.com.cn/Thesis/Y619531
[25] 张继平, 刘直芳.背景估计与运动目标检测跟踪.计算技术与自动化, 2004, 23(4):51-54 http://d.wanfangdata.com.cn/Periodical/jsjsyzdh200404017

Zhang Ji-Ping, Liu Zhi-Fang. Background estimation and moving target detection. Computing Technology and Automation, 2004, 23(4):51-54 http://d.wanfangdata.com.cn/Periodical/jsjsyzdh200404017
[26] Adams R, Bischof L. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(6):641-647 doi: 10.1109/34.295913
[27] 林开颜, 吴军辉, 徐立鸿.彩色图像分割方法综述.中国图象图形学报, 2005, 10(1):1-10 http://d.wanfangdata.com.cn/Periodical/zgtxtxxb-a200501001

Lin Kai-Yan, Wu Jun-Hui, Xu Li-Hong. A survey on color image segmentation techniques. Journal of Image and Graphics, 2005, 10(1):1-10 http://d.wanfangdata.com.cn/Periodical/zgtxtxxb-a200501001
[28] 韩思奇, 王蕾.图像分割的阈值法综述.系统工程与电子技术, 2002, 24(6):91-94 http://d.wanfangdata.com.cn/Periodical/xtgcydzjs200206027

Han Si-Qi, Wang Lei. A survey of thresholding methods for image segmentation. Systems Engineering and Electronics, 2002, 24(6):91-94 http://d.wanfangdata.com.cn/Periodical/xtgcydzjs200206027
[29] 王惠明, 史萍.图像纹理特征的提取方法.中国传媒大学学报自然科学版, 2006, 13(1):49-52 http://d.wanfangdata.com.cn/Periodical/bjgbxyxb200601009

Wang Hui-Ming, Shi Ping. Methods to extract images texture features. Journal of Communication University of China Science and Technology, 2006, 13(1):49-52 http://d.wanfangdata.com.cn/Periodical/bjgbxyxb200601009
[30] 汪启伟. 图像直方图特征及其应用研究[博士学位论文], 中国科学技术大学, 中国, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10358-1014189442.htm

Wang Qi-Wei. Study on image histogram feature and application[Ph.D. dissertation], University of Science and Technology of China, China, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10358-1014189442.htm
[31] 丁明跃, 常金玲, 彭嘉雄.不变矩算法研究.数据采集与处理, 1992, 7(1):1-9 http://d.wanfangdata.com.cn/Periodical/dzkxxk200807041

Ding Ming-Yue, Chang Jin-Ling, Peng Jia-Xiong. Research on moment invariants algorithm. Journal of Data Acquisition & Processing, 1992, 7(1):1-9 http://d.wanfangdata.com.cn/Periodical/dzkxxk200807041
[32] 严柏军, 郑链, 王克勇.基于不变矩特征匹配的快速目标检测算法.红外技术, 2001, 23(6):8-12 http://d.wanfangdata.com.cn/Periodical/hwjs200106003

Yan Bo-Jun, Zheng Lian, Wang Ke-Yong. Fast target-detecting algorithm based on invariant moment. Infrared Technology, 2001, 23(6):8-12 http://d.wanfangdata.com.cn/Periodical/hwjs200106003
[33] 张伟, 何金国. Hu不变矩的构造与推广.计算机应用, 2010, 30(9):2449-2452 http://d.wanfangdata.com.cn/Periodical/jsjyy201009046

Zhang Wei, He Jin-Guo. Construction and generalization of Hu moment invariants. Journal of Computer Application, 2010, 30(9):2449-2452 http://d.wanfangdata.com.cn/Periodical/jsjyy201009046
[34] 刘进, 张天序.图像不变矩的推广.计算机学报, 2004, 27(5):668-674 http://d.wanfangdata.com.cn/Periodical/jsjxb200405012

Liu Jin, Zhang Tian-Xu. The generalization of moment invariants. Chinese Journal of Computers, 2004, 27(5):668-674 http://d.wanfangdata.com.cn/Periodical/jsjxb200405012
[35] 洪子泉, 杨静宇.用于图象识别的图象代数特征抽取.自动化学报, 1992, 18(2):233-238 http://www.aas.net.cn/CN/abstract/abstract14490.shtml

Hong Zi-Quan, Yang Jing-Yu. Algebraic feature extraction of images for recognition. Acta Automatica Sinica, 1992, 18(2):233-238 http://www.aas.net.cn/CN/abstract/abstract14490.shtml
[36] 赵峰, 黄庆明, 高文.一种基于奇异值分解的图像匹配算法.计算机研究与发展, 2010, 47(1):23-32 http://d.wanfangdata.com.cn/Periodical/jsjyjyfz201001004

Zhao Feng, Huang Qing-Ming, Gao Wen. An image matching algorithm based on singular value decomposition. Journal of Computer Research and Development, 2010, 47(1):23-32 http://d.wanfangdata.com.cn/Periodical/jsjyjyfz201001004
[37] 蒋明, 张桂林, 胡若澜, 陈朝阳.基于主成分分析的图像匹配方法研究.红外与激光工程, 2000, 29(4):17-21 http://d.wanfangdata.com.cn/Periodical/hwyjggc200004006

Jiang Ming, Zhang Gui-Lin, Hu Ruo-Lan, Chen Zhao-Yang. Research of an image matching method based on principal component analysis. Infrared and Laser Engineering, 2000, 29(4):17-21 http://d.wanfangdata.com.cn/Periodical/hwyjggc200004006
[38] 杨竹青, 李勇, 胡德文.独立成分分析方法综述.自动化学报, 2002, 28(5):762-772 http://www.aas.net.cn/CN/abstract/abstract16161.shtml

Yang Zhu-Qing, Li Yong, Hu De-Wen. Independent component analysis:a survey. Acta Automatica Sinica, 2002, 28(5):762-772 http://www.aas.net.cn/CN/abstract/abstract16161.shtml
[39] 张春美, 龚志辉, 孙雷.改进SIFT特征在图像匹配中的应用.计算机工程与应用, 2008, 44(2):95-97 http://d.wanfangdata.com.cn/Periodical/jsjgcyyy200802029

Zhang Chun-Mei, Gong Zhi-Hui, Sun Lei. Improved SIFT feature applied in image matching. Computer Engineering and Applications, 2008, 44(2):95-97 http://d.wanfangdata.com.cn/Periodical/jsjgcyyy200802029
[40] Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 4293-4302 http://ieeexplore.ieee.org/document/7780834/
[41] Chen Y, Yang X N, Zhong B N, Pan S N, Chen D S, Zhang H Z. CNNTracker:online discriminative object tracking via deep convolutional neural network. Applied Soft Computing, 2016, 38:1088-1098 doi: 10.1016/j.asoc.2015.06.048
[42] Bertinetto L, Valmadre J, Henriques J F, Vedaldi A, Torr P H S. Fully-convolutional siamese networks for object tracking. In:European Conference on Computer Vision. Amsterdam, The Netherlands:Springer, 2016. 850-865 doi: 10.1007/978-3-319-48881-3_56
[43] 赵亮, 刘建辉, 王星.基于Hellinger距离的混合数据集中分类变量相似度分析.计算机科学, 2016, 43(6):280-282 doi: 10.11896/j.issn.1002-137X.2016.06.055

Zhao Liang, Liu Jian-Hui, Wang Xing. Hellinger distance based similarity analysis for categorical variables in mixture dataset. Computer Science, 2016, 43(6):280-282 doi: 10.11896/j.issn.1002-137X.2016.06.055
[44] 宣国荣, 柴佩琪.基于巴氏距离的特征选择.模式识别与人工智能, 1996, 9(4):324-329 http://d.wanfangdata.com.cn/Periodical/jsjgcyyy200436028

Xuan Guo-Rong, Chai Pei-Qi. Feature selection based on Bhattacharyya distance. PR & AI, 1996, 9(4):324-329 http://d.wanfangdata.com.cn/Periodical/jsjgcyyy200436028
[45] 何天晓, 常玉堂.多元插值法.工科数学, 1985, (1):12-16 http://d.wanfangdata.com.cn/Periodical/jxsjyzz201105031
[46] Lo S C B, Chan H P, Lin J S, Li H, Freedman M T, Mun S K. Artificial convolution neural network for medical image pattern recognition. Neural Networks, 1995, 8(7-8):1201-1214 doi: 10.1016/0893-6080(95)00061-5
[47] Ferryman J, Shahrokni A. PETS2009:dataset and challenge. In:Proceedings of the 20th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS-Winter). Snowbird, UT, USA:IEEE, 2009. 1-6 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5399556
[48] Leal-Taixé L, Milan A, Reid I, Schindler K. MOTChallenge 2015:towards a benchmark for multi-target tracking. arXiv preprint arXiv:1504.01942, 2015. http://arxiv.org/abs/1504.01942
[49] Fisher R B. The PETS04 surveillance ground-truth data sets. In:Proceedings of the 6th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. New York, USA:IEEE, 2004. 1-5 http://www.researchgate.net/publication/228745046_the_pets04_surveillance_ground-truth_data_sets
[50] Home Office Scientific Development Branch. Imagery library for intelligent detection systems (i-LIDS). In:Proceedings of the 2006 Institution of Engineering and Technology Conference on Crime and Security. London, UK:IET, 2006. 445-448 http://ieeexplore.ieee.org/document/4123801/
[51] Wen L Y, Du D W, Cai Z W, Lei Z, Chang M C, Qi H G, Lim J, Yang M H, Lyu S. UA-DETRAC:a new benchmark and protocol for multi-object detection and tracking. arXiv preprint arXiv:1511.04136, 2015. http://arxiv.org/abs/1511.04136
[52] Alahi A, Ramanathan V, Li F F. Socially-aware large-scale crowd forecasting. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA:IEEE, 2014. 2203-2210 http://ieeexplore.ieee.org/document/6909680/
[53] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the KITTI vision benchmark suite. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2012. 3354-3361 https://www.computer.org/csdl/proceedings/cvpr/2012/1226/00/424O3C04-abs.html
[54] Ros G, Sellart L, Materzynska J, Vazquez D, Lopez A M. The SYNTHIA dataset:a large collection of synthetic images for semantic segmentation of urban scenes. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 3234-3243 http://ieeexplore.ieee.org/document/7780721/
[55] Huang C, Wu B, Nevatia R. Robust object tracking by hierarchical association of detection responses. In:Proceedings of the 10th European Conference on Computer Vision. Marseille, France:Springer, 2008. 788-801 http://www.springerlink.com/content/d426ur512533w32n
[56] Richard M D, Lippmann R P. Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation, 1991, 3(4):461-483 doi: 10.1162/neco.1991.3.4.461
[57] Greig D M, Porteous B T, Seheult A H. Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society. Series B (Methodological), 1989, 51(2):271-279 http://www.citeulike.org/user/mstone/article/2067236
[58] Yang B, Nevatia R. Multi-target tracking by online learning a CRF model of appearance and motion patterns. International Journal of Computer Vision, 2014, 107(2):203-217 doi: 10.1007/s11263-013-0666-4
[59] Overett G, Petersson L, Brewer N, Andersson L, Pettersson N. A new pedestrian dataset for supervised learning. In:Proceedings of the 2008 IEEE Intelligent Vehicles Symposium. Eindhoven, Netherlands:IEEE, 2008. 373-378 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4621297
[60] Wu B Y, Lyu S, Hu B G, Ji Q. Simultaneous clustering and tracklet linking for multi-face tracking in videos. In:Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, NSW, Australia:IEEE, 2013. 2856-2863 http://dl.acm.org/citation.cfm?id=2587103
[61] Viola P, Jones M J. Robust real-time face detection. International Journal of Computer Vision, 2004, 57(2):137-154 doi: 10.1023/B:VISI.0000013087.49260.fb
[62] Leung V, Herbin S. Flexible tracklet association for complex scenarios using a Markov Logic Network. In:Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). Barcelona, Spain:IEEE, 2011. 1870-1875 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6130476
[63] Wang B, Wang G, Luk Chan K, Wang L. Tracklet association with online target-specific metric learning. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA:IEEE, 2014. 1234-1241 https://www.computer.org/csdl/proceedings/cvpr/2014/5118/00/5118b234-abs.html
[64] Wu Z, Kunz T H, Betke M. Efficient track linking methods for track graphs using network-flow and set-cover techniques. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO, USA:IEEE, 2011. 1185-1192 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5995515
[65] Shitrit H B, Berclaz J, Fleuret F, Fua P. Multi-commodity network flow for tracking multiple people. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8):1614-1627 doi: 10.1109/TPAMI.2013.210
[66] Song B, Jeng T Y, Staudt E, Roy-Chowdhury A K. A stochastic graph evolution framework for robust multi-target tracking. In:Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece:Springer, 2010. 605-619 http://dl.acm.org/citation.cfm?id=1886109
[67] Geyer C J. Practical Markov chain monte Carlo. Statistical Science, 1992, 7(4):473-483 doi: 10.1214/ss/1177011137
[68] Zamir A R, Dehghan A, Shah M. GMCP-tracker:global multi-object tracking using generalized minimum clique graphs. Computer Vision——ECCV 2012. Berlin, Heidelberg:Springer, 2012. 343-356 doi: 10.1007/978-3-642-33709-3_25
[69] Wang B, Wang L, Shuai B, Zuo Z, Liu T, Chan K L, Wang G. Joint learning of convolutional neural networks and temporally constrained metrics for tracklet association. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Las Vegas, NV, USA:IEEE, 2016. 1-8 http://ieeexplore.ieee.org/document/7789545/
[70] Gold S, Rangarajan A. Softmax to softassign:neural network algorithms for combinatorial optimization. Journal of Artificial Neural Networks, 1996, 2(4):381-399 http://www.academia.edu/25129547/Softmax_to_Softassign_Neural_Network_Algorithms_for_Combinatorial_Optimization
[71] Qin Z, Shelton C R. Improving multi-target tracking via social grouping. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2012. 1972-1978 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6247899
[72] Sun X, Zhu S H, Jin D L, Liang Z W, Xu G Z. Tracklet association for object tracking. In:Proceedings of the 2016 Chinese Control and Decision Conference (CCDC). Yinchuan, China:IEEE, 2016. 107-112 http://ieeexplore.ieee.org/document/7530963/
[73] Xing J L, Ai H Z, Lao S H. Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA:IEEE, 2009. 1200-1207 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5206745
[74] Bae S H, Yoon K J. Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In:Proceedings of the 2014 IEEE conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA:IEEE, 2014. 1218-1225 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6909555
[75] Yang B, Nevatia R. Multi-target tracking by online learning of non-linear motion patterns and robust appearance models. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2012. 1918-1925 http://dl.acm.org/citation.cfm?id=2354940
[76] Kuo C H, Nevatia R. How does person identity recognition help multi-person tracking? In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO, USA:IEEE, 2011. 1217-1224 http://dl.acm.org/citation.cfm?id=2191740.2191963
[77] Kumar G, Bhatia P K. A detailed review of feature extraction in image processing systems. In:Proceedings of the 4th International Conference on Advanced Computing & Communication Technologies (ACCT). Rohtak, India:IEEE, 2014. 5-12 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6783417
[78] Kulchandani J S, Dangarwala K J. Moving object detection:review of recent research trends. In:Proceedings of the 2015 International Conference on Pervasive Computing (ICPC). Pune, India:IEEE, 2015. 1-5 http://ieeexplore.ieee.org/document/7087138/
[79] Shukla A P, Saini M. "Moving object tracking of vehicle detection":a concise review. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2015, 8(3):169-176 doi: 10.14257/ijsip
[80] 丁忠校.视频监控图像的运动目标检测方法综述.电视技术, 2008, 32(5):72-76 http://d.wanfangdata.com.cn/Periodical/dsjs200805027

Ding Zhong-Xiao. Survey on moving object detection methods for video surveillance images. Video Engineering, 2008, 32(5):72-76 http://d.wanfangdata.com.cn/Periodical/dsjs200805027
[81] Moussaïd M, Helbing D, Theraulaz G. How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17):6884-6888 doi: 10.1073/pnas.1016507108
[82] Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic. Nature, 2000, 407(6803):487-490 doi: 10.1038/35035023
[83] Courty N, Allain P, Creusot C, Corpetti T. Using the AGORASET dataset:assessing for the quality of crowd video analysis methods. Pattern Recognition Letters, 2014, 44:161-170 doi: 10.1016/j.patrec.2014.01.004
[84] 王飞跃.平行系统方法与复杂系统的管理和控制.控制与决策, 2004, 19(5):485-489, 514 http://d.wanfangdata.com.cn/Periodical/kzyjc200405002

Wang Fei-Yue. Parallel system methods for management and control of complex systems. Control and Decision, 2004, 19(5):485-489, 514 http://d.wanfangdata.com.cn/Periodical/kzyjc200405002
[85] 王飞跃.平行控制:数据驱动的计算控制方法.自动化学报, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtml

Wang Fei-Yue. Parallel control:a method for data-driven and computational control. Acta Automatica Sinica, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtml
[86] 白天翔, 王帅, 沈震, 曹东璞, 郑南宁, 王飞跃.平行机器人与平行无人系统:框架、结构、过程、平台及其应用.自动化学报, 2017, 43(2):161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtml

Bai Tian-Xiang, Wang Shuai, Shen Zhen, Cao Dong-Pu, Zheng Nan-Ning, Wang Fei-Yue. Parallel robotics and parallel unmanned systems:framework, structures, process, platform and applications. Acta Automatica Sinica, 2013, 43(2), 161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtml
[87] 白天翔, 王帅, 赵学亮, 秦继荣.平行武器:迈向智能战争的武器.指挥与控制学报, 2017, 3(2):89-98 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zhkz201702001&dbname=CJFD&dbcode=CJFQ

Bai Tian-Xiang, Wang Shuai, Zhao Xue-Liang, Qin Ji-Rong. Parallel weapons:weapons towards intelligent warfare. Journal of Command and Control, 2017, 3(2):89-98 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zhkz201702001&dbname=CJFD&dbcode=CJFQ
[88] 李力, 林懿伦, 曹东璞, 郑南宁, 王飞跃.平行学习——机器学习的一个新型理论框架.自动化学报, 2017, 43(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18984.shtml

Li Li, Lin Yi-Lun, Cao Dong-Pu, Zheng Nan-Ning, Wang Fei-Yue. Parallel learning——a new framework for machine learning. Acta Automatica Sinica, 2017, 43(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18984.shtml
[89] Li L, Lin Y L, Zheng N N, Wang F Y. Parallel learning:a perspective and a framework. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3):389-395 doi: 10.1109/JAS.2017.7510493
[90] 刘昕, 王晓, 张卫山, 汪建基, 王飞跃.平行数据:从大数据到数据智能.模式识别与人工智能, 2017, 30(8):673-681 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mssb201708001&dbname=CJFD&dbcode=CJFQ

Liu Xin, Wang Xiao, Zhang Wei-Shan, Wang Jian-Ji, Wang Fei-Yue. Parallel data:from big data to data intelligence. Pattern Recognition and Artificial Intelligence, 2017, 30(8):673-681 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mssb201708001&dbname=CJFD&dbcode=CJFQ
[91] Wang F Y. Scanning the issue and beyond:parallel driving with software vehicular robots for safety and smartness. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4):1381-1387 doi: 10.1109/TITS.2014.2342451
[92] Wang F Y, Zheng N N, Cao D P, Martinez C M, Li L, Liu T. Parallel driving in CPSS:a unified approach for transport automation and vehicle intelligence. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4):577-587 doi: 10.1109/JAS.2017.7510598
[93] 王坤峰, 苟超, 王飞跃.平行视觉:基于ACP的智能视觉计算方法.自动化学报, 2016, 42(10):1490-1500 http://www.aas.net.cn/CN/abstract/abstract18936.shtml

Wang Kun-Feng, Gou Chao, Wang Fei-Yue. Parallel vision:an ACP-based approach to intelligent vision computing. Acta Automatica Sinica, 2016, 42(10):1490-1500 http://www.aas.net.cn/CN/abstract/abstract18936.shtml
[94] Wang K F, Gou C, Zheng N N, Rehg J M, Wang F Y. Parallel vision for perception and understanding of complex scenes:methods, framework, and perspectives. Artificial Intelligence Review, 2017, 48(3):299-329 doi: 10.1007/s10462-017-9569-z
[95] 王坤峰, 鲁越, 王雨桐, 熊子威, 王飞跃.平行图像:图像生成的一个新型理论框架.模式识别与人工智能, 2017, 30(7):577-587 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mssb201707001&dbname=CJFD&dbcode=CJFQ

Wang Kun-Feng, Lu Yue, Wang Yu-Tong, Xiong Zi-Wei, Wang Fei-Yue. Parallel imaging:a new theoretical framework for image generation. Pattern Recognition and Artificial Intelligence, 2017, 30(7):577-587 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mssb201707001&dbname=CJFD&dbcode=CJFQ