[1] 胡进, 侯增广, 陈翼雄, 张峰, 王卫群.下肢康复机器人及其交互控制方法.自动化学报, 2014, 40(11):2377-2390 http://www.aas.net.cn/CN/abstract/abstract18514.shtml

Hu Jin, Hou Zeng-Guang, Chen Yi-Xiong, Zhang Feng, Wang Wei-Qun. Lower limb rehabilitation robots and interactive control methods. Acta Automatica Sinica, 2014, 40(11):2377-2390 http://www.aas.net.cn/CN/abstract/abstract18514.shtml
[2] 彭亮, 侯增广, 王卫群.康复机器人的同步主动交互控制与实现.自动化学报, 2015, 41(11):1837-1846 http://www.aas.net.cn/CN/abstract/abstract18759.shtml

Peng Liang, Hou Zeng-Guang, Wang Wei-Qun. Synchronous active interaction control and its implementation for a rehabilitation robot. Acta Automatica Sinica, 2015, 41(11):1837-1846 http://www.aas.net.cn/CN/abstract/abstract18759.shtml
[3] 谭民, 王硕.机器人技术研究进展.自动化学报, 2013, 39(7):963-972 http://www.aas.net.cn/CN/abstract/abstract18124.shtml

Tan Min, Wang Shuo. Research progress on robotics. Acta Automatica Sinica, 2013, 39(7):963-972 http://www.aas.net.cn/CN/abstract/abstract18124.shtml
[4] Whitney D E. Resolved motion rate control of manipulators and human prostheses. IEEE Transactions on Man-Machine Systems, 1969, 10(2):47-53 doi: 10.1109/TMMS.1969.299896
[5] 殷跃红, 尉忠信, 朱剑英.机器人柔顺控制研究.机器人, 1998, 20(3):232-240 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR803.011.htm

Yin Yue-Hong, Wei Zhong-Xin, Zhu Jian-Ying. Compliance control of robot an overview. Robot, 1998, 20(3):232-240 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR803.011.htm
[6] Shibata T, Murakami T. Power-assist control of pushing task by repulsive compliance control in electric wheelchair. IEEE Transactions on Industrial Electronics, 2012, 59(1):511-520 doi: 10.1109/TIE.2011.2146210
[7] Katsura S, Ohnishi K. Human cooperative wheelchair for haptic interaction based on dual compliance control. IEEE Transactions on Industrial Electronics, 2004, 51(1):221-228 doi: 10.1109/TIE.2003.821890
[8] Xu W X, Huang J, Wang Y J, Tao C J, Cheng L. Reinforcement learning-based shared control for walking-aid robot and its experimental verification. Advanced Robotics, 2015, 29(22):1463-1481 doi: 10.1080/01691864.2015.1070748
[9] Wannier T, Bastiaanse C, Colombo G, Dietz V. Arm to leg coordination in humans during walking, creeping and swimming activities. Experimental Brain Research, 2001, 141(3):375-379 doi: 10.1007/s002210100875
[10] Stephenson J L, Lamontagne A, De Serres S J. The coordination of upper and lower limb movements during gait in healthy and stroke individuals. Gait and Posture, 2009, 29(1):11-16 doi: 10.1016/j.gaitpost.2008.05.013
[11] Suzuki S, Hirata Y, Kosuge K, Onodera H. Walking support based on cooperation between wearable-type and cane-type walking support systems. In:Proceedings of the 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Budapest, Hungary:IEEE, 2011. 122-127
[12] Huang J, Huo W G, Xu W X, Mohammed S, Amirat Y. Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition. IEEE Transactions on Automation Science and Engineering, 2015, 12(4):1257-1270 doi: 10.1109/TASE.2015.2466634
[13] Huang J, Tu X K, He J P. Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(7):926-935 doi: 10.1109/TSMC.2015.2497205
[14] Wu J, Huang J, Wang Y J, Xing K X. Nonlinear disturbance observer-based dynamic surface control for trajectory tracking of pneumatic muscle system. IEEE Transactions on Control Systems Technology, 2014, 22(2):440-455 doi: 10.1109/TCST.2013.2262074
[15] Mirmahboub B, Samavi S, Karimi N, Shirani S. Automatic monocular system for human fall detection based on variations in silhouette area. IEEE Transactions on Biomedical Engineering, 2013, 60(2):427-436 doi: 10.1109/TBME.2012.2228262
[16] Litvak D, Zigel Y, Gannot I. Fall detection of elderly through floor vibrations and sound. In:Proceedings of the 30th Annual International Conference on Engineering in Medicine and Biology Society. Vancouver, British Columbia, Canada:IEEE, 2008. 4632-4635
[17] Cheng W C, Jhan D M. Triaxial accelerometer-based fall detection method using a self-constructing cascade-AdaBoost-SVM classifier. IEEE Journal of Biomedical and Health Informatics, 2013, 17(2):411-419 doi: 10.1109/JBHI.2012.2237034
[18] Karantonis D M, Narayanan M R, Mathie M, Lovell N H, Celler B G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine, 2006, 10(1):156-167 doi: 10.1109/TITB.2005.856864
[19] Wu G. Distinguishing fall activities from normal activities by velocity characteristics. Journal of Biomechanics, 2000, 33(11):1497-1500 doi: 10.1016/S0021-9290(00)00117-2
[20] Williams G, Doughty K, Cameron K, Bradley D A. A smart fall and activity monitor for telecare applications. In:Proceedings of the 20th Annual International Conference on Engineering in Medicine and Biology Society. Hong Kong, China:IEEE, 1998. 1151-1154
[21] Degen T, Jaeckel H, Rufer M, Wyss S. SPEEDY:a fall detector in a wrist watch. In:Proceedings of the 7th IEEE International Symposium on Wearable Computers. White Plains, New York, USA:IEEE, 2003. 184-189
[22] Hirata Y, Muraki A, Kosuge K. Motion control of intelligent walker based on renew of estimation parameters for user state. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 1050-1055
[23] Hirata Y, Komatsuda S, Kosuge K. Fall prevention control of passive intelligent walker based on human model. In:Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France:IEEE, 2008. 1222-1228
[24] Huang J, Di P, Wakita K, Fukuda T, Sekiyama K. Study of fall detection using intelligent cane based on sensor fusion. In:Proceedings of the 2008 International Symposium on Micro-NanoMechatronics and Human Science. Nagoya, Japan:IEEE, 2008. 495-500
[25] Huang J, Xu W X, Mohammed S, Shu Z. Posture estimation and human support using wearable sensors and walking-aid robot. Robotics and Autonomous Systems, 2015, 73:24-43 doi: 10.1016/j.robot.2014.11.013
[26] Han R, Tao C J, Huang J, Wang Y J, Yan H P, Ma L F. Design and control of an intelligent walking-aid robot. In:Proceedings of the 6th International Conference on Modelling, Identification, and Control. Melbourne, VIC:IEEE, 2014. 53-58
[27] Li P, Kadirkamanathan V. Fault detection and isolation in non-linear stochastic systems-a combined adaptive Monte Carlo filtering and likelihood ratio approach. International Journal of Control, 2004, 77(12):1101-1114 doi: 10.1080/00207170412331293311
[28] Jebson P J L, Hayden R J. AO principles of fracture management. The Journal of the American Medical Association, 2008, 300(20):2432-2433 doi: 10.1001/jama.2008.703
[29] Lefebvre T, Xiao J, Bruyninckx H, De Gersem G. Active compliant motion:a survey. Advanced Robotics, 2005, 19(5):479-499 doi: 10.1163/156855305323383767
[30] Marsland S. Machine Learning:An Algorithmic Perspective. Boca Raton, FL, USA:Chapman and Hall/CRC, 2009. 356-359
[31] Kadirkamanathan V, Li P, Jaward M H, Fabri S G. Particle filtering-based fault detection in non-linear stochastic systems. International Journal of Systems Science, 2002, 33(4):259-265 doi: 10.1080/00207720110102566