一类不确定非完整性动力学系统的时变镇定

董文杰 霍 伟
(北京航空航天大学第七研究室 北京 100083)

摘要 对于一类具有未知参数的非完整性动力学系统, 提出了新的时变自适应镇定规律, 并将其用于一类移动机器人的位置镇定中, 仿真结果验证了所提控制方法的有效性。

关键词 非完整控制系统, 不确定非线性系统, 自适应控制, 移动机器人

TIME-VARYING STABILIZATION OF UNCERTAIN DYNAMIC NONHOLONOMIC SYSTEMS

DONG Wenjie HUO Wei
(The Seventh Research Division, Beijing University of Aero. and Astro. Beijing 100083)

Abstract A new time varying adaptive control law is given for a class of dynamic nonholonomic chained systems with unknown constant inertia parameters. An application to a wheeled mobile robot is described. Simulation results show that the approach is effective.

Key words Nonholonomic control, uncertain nonlinear system, adaptive control, wheeled mobile robot.

1 问题描述

近年来, 非完整控制系统受到越来越多的重视, 以前的研究主要集中在非完整运动学系统, 但实际系统常常是惯性参数不能精确知道的动力学系统。为此, 本文研究这类系统的镇定问题, 提出一种新的自适应控制律。

受非完整约束机械系统的一般方程为

\[H(q)\dot{q} + C(q, \dot{q})\dot{q} + G(q) = B(q)\tau + J^T(q)\lambda, \] \hspace{1cm} (1)

\[J(q)\dot{q} = 0, \] \hspace{1cm} (2)

其中 \(q = [q_1, \cdots, q_n]^T \), \(H(q) \) 是 \(n \times n \) 正定对称阵, \(C(q, \dot{q})\dot{q} \) 表示哥氏力和离心力, \(G(q) \)

1) 国家自然科学基金资助课题。

收稿日期 1997-06-24 收修改稿日期 1997-10-29
重力项，\(B(q) \) 是 \(n \times m \) 矩阵，质量阵 \((2 \leq m \leq n) \)，\(J(q) \) 是 \((n-m) \times n \) 满秩矩阵，\(\lambda \) 是 \((n-m) \) 维 Lagrange 乘子，\(\tau \) 是控制输入。假定约束 (2) 是完全非线性的，式 (1) 有两个性质：1) 适当定义 \(C, H - 2C \) 是反对称阵；2) \(H(q)\dot{\xi} + C(q, \dot{q})\dot{\xi} + G(q) = Y(q, \dot{q}, \xi, \dot{\xi}) + a, a \) 是常值惯性参数向量，\(Y(*) \) 与 \(a \) 无关的已知矩阵。

设 \(g(q) = [g_1(q), \cdots, g_m(q)] \) 的列构成 \(J(q) \) 零空间的基，则知存在 \(v \) 使得

\[
q = g(q)v = g_1(q)v_1 + \cdots + g_m(q)v_m. \tag{3}
\]

上式两边求导并代入式 (1) 中，然后再求乘以 \(g^T(q) \) 得到

\[
H(q)v + C(q, \dot{q})v + G(q) = B_1(q)\tau. \tag{4}
\]

其中 \(H_1 = g^T H g, C_1 = g^T H \dot{g} + g^T C g, G_1 = g^T G, B_1 = g^T B \)。式 (3)，(4) 描述了消去约束反力后的系统 (1)，(2)。假定 \(H_1(q) \geq \lambda I \geq 0, \) 且 \(B_1(q) \) 是满秩的。

研究的问题是，若未知时如何设计控制规律使系统 (3)，(4) 的状态 \(q \) 和 \(v \) 滅速趋于零点。

2 主要结果

为便于设计，假设式 (3) 已经状态和输入变为化为如下两输入的链式系统

\[
\dot{q}_1 = v_1, \quad \dot{q}_2 = v_2, \quad \dot{q}_j = v_{j-1}(3 \leq j \leq n). \tag{5}
\]

对于一般 \(m \) 输入链式系统也可类似讨论，此处从略。取同胚变换 \(x = \phi(q) \):

\[
x_1 = q_1, \quad x_2 = q_2, \quad x_k = \sum_{i=0}^{k-2} (-1)^i \frac{q_{k-i}^{k-2-i}}{(k-2-i)!} q_{k+i} \quad (3 \leq k \leq n), \tag{6}
\]

式 (5) 和 (4) 等价变换为

\[
\dot{x}_1 = v_1, \quad \dot{x}_2 = v_2, \quad \dot{x}_j = \frac{x_{j-2}v_2}{(j-2)!} \quad (3 \leq j \leq n), \tag{7a}
\]

\[
H_2(x)v + C_2(x, \dot{x})v + G_2(x) = B_2(x)\tau, \tag{7b}
\]

其中 \(H_2(x) = H_1(q)|_{q = \phi^{-1}(x)}, C_2(x, \dot{x}) = C_1(q, \dot{q})|_{q = \phi^{-1}(x)}, G_2(x) = G_1(q)|_{q = \phi^{-1}(x)}, B_2(x) = B_1(q)|_{q = \phi^{-1}(x)}. \) 易证 \(H_2 - 2C_2 \) 是反对称阵，\(H_2(x)\dot{\xi} + C_2(x, \dot{x})\dot{\xi} + G_2(x) = \Phi(x, x, \dot{x}, \dot{\xi})a, \)

\(\Phi(x, x, \dot{x}, \dot{\xi}) \) 与 \(a \) 无关。设 \(\tilde{a} \) 为 \(a \) 的估计值，当 \(a \) 取值为 \(a \) 时 \(H_2, C_2 \) 和 \(G_2 \) 的对应值分别记为 \(H_{20}, C_{20} \) 和 \(G_{20} \)。

定理：对于系统 (7)，令

\[
\eta = \left[\frac{n}{k_1} \sin \omega t \sum_{j=2}^{n} k_j x_j + k_1 \left[k_1 x_1 + \cos \omega t \sum_{j=2}^{n} k_j x_j^2 \right] \right],
\]

\[
\sigma = \left[k_1 (k_1 x_1 + \cos \omega t \sum_{j=2}^{n} k_j x_j) \right],
\]

式中 \(\omega > 0, k_1 > 0 (1 \leq i \leq n), K_p > 0, \Gamma > 0 \)，则控制律

\[
\tau = B_2^{-1}(x)[\dot{H}_2\eta + \dot{C}_2\eta + \dot{G}_2 - K_p(\eta - \eta) - \sigma], \tag{8}
\]
\[\dot{a} = - \Gamma^{-1} \Phi^T(x, \xi, \eta, \bar{\eta})(v - \eta) \]

（9）

设定 \(x \) 和 \(v \) 到系统原点。

证明：记 \(\ddot{a} = \dot{a} - a, \ddot{v} = v - \eta \)，则式（7）-（9）可写为

\[
\dot{x}_1 = \eta_1 + \ddot{v}_1, \quad \dot{x}_2 = \eta_2 + \ddot{v}_2, \quad \dot{x}_j = \frac{x_{j-1}}{(j-2)!} (\eta_j + \ddot{v}_j) \quad (3 \leq j \leq n), \tag{10a}
\]

\[
H \ddot{v} = \Phi(x, \xi, \eta, \bar{\eta}) \ddot{a} - C_2 \ddot{v} - K \ddot{v} - \sigma. \tag{10b}
\]

取 \(V = \frac{1}{2} \left[(k_1 x_1 + w_1 \sum_{l=1}^{n-2} k_l x_l^2)^2 + \sum_{l=1}^{n-2} k_l x_l^2 + \ddot{a}^T \Gamma \ddot{a} + \ddot{v}^T H \ddot{v} \right] \)，则

\[
V = - k_1 (k_1 x_1 + w_1 \sum_{l=1}^{n-2} k_l x_l^2) \left[\sum_{l=1}^{n-2} \frac{k_l x_l^2}{(l-2)!} + 2 \omega_1 k_1 x_1 + w_1 \sum_{l=1}^{n-2} k_l x_l^2 \right] \sum_{l=1}^{n-2} \frac{k_l x_l^2}{(l-2)!} - \ddot{v}^T K \ddot{v}. \tag{10c}
\]

取 \(V \) 非增，\(x(t), \ddot{v}(t) \) 和 \(\ddot{a}(t) \) 有界。由式（10）的解收敛于 \(\omega = \{(x, \dot{v}, \ddot{a}, \ddot{w}) : k_1 x_1 + w_1 \sum_{l=1}^{n-2} k_l x_l^2 = 0, \ddot{v}(t) = 0, \ddot{w}(t) = 0 \} \) 的最大不变集。下面证明，\(\omega \) 的最大不变集为

\[
E = \{(x, \dot{v}) : x_1 = 0(1 \leq i \leq n), \dot{v} = 0 \} \text{ 在 } \omega \text{ 中，式(10)的前 } n \text{ 个方程为}
\]

\[\dot{x}_1 = \frac{\omega}{k_1} \sum_{l=1}^{n-2} k_l x_l^2 \sin \omega t, \quad \dot{x}_2 = 0, \ldots, \dot{x}_n = 0. \tag{11} \]

用反证法证明 \(\sum_{l=1}^{n-2} k_l x_l^2 \sin \omega t = 0 (\forall t) \)。假设不然，则 \(\sum_{l=1}^{n-2} k_l x_l^2 = 0 \) 且 \(\sum_{l=1}^{n-2} k_l x_l^2 \) 皆不为零，由式（11）可知

\[\sum_{l=1}^{n-2} \frac{k_l x_l^2}{(i-2)!} = 0. \tag{11} \]

对式求导知

\[\sum_{l=1}^{n-2} k_l x_l^2 = 0. \]

由于 \(\sum_{i=1}^{n-2} k_l x_l^2 = 0 \) 且 \(\omega \) 的最大不变集，故 \(\sum_{i=1}^{n-2} k_l x_l^2 \sin \omega t = 0 \) 且 \(\dot{x}_1 = 0(2 \leq i \leq n) \)。与 \(\sum_{i=1}^{n-2} k_l x_l^2 = 0 \) 矛盾。故 \(\sum_{i=1}^{n-2} k_l x_l^2 = 0 \) 且 \(\dot{x}_1 = 0(2 \leq i \leq n) \) 且 \(x_1 = 0 \)，即 \(E \) 是包含在 \(\omega \) 中的最大不变集。因此，\(x \) 和 \(v \) 收敛于零。

证毕。

3. 仿真

考虑文[2]中例子，沿用其记号，系统的动力学方程及所受非完整约束为

\[m \ddot{x} = \lambda \cos \theta - \frac{1}{R} (u_1 + u_2) \sin \theta, \quad m \ddot{y} = \lambda \sin \theta + \frac{1}{R} (u_1 + u_2) \cos \theta. \tag{12a} \]

\[I_\theta \dot{\theta} = \frac{L}{R} (u_1 - u_2), \quad \dot{x} \cos \theta - \dot{y} \sin \theta = 0. \tag{12b} \]

由第二部分的推导过程，式（12）可由如下方程描述[3]：

\[\dot{x} = -w_1 \sin \theta, \quad \dot{y} = w_1 \cos \theta, \quad \dot{\theta} = w_2, \quad m \ddot{w}_1 = \frac{1}{R} (u_1 + u_2), \quad I_\theta \ddot{w}_2 = \frac{L}{R} (u_1 - u_2). \]

取变量变换：\(x_1 = -x \sin \theta + y \cos \theta, \quad x_2 = \theta, \quad x_3 = x \cos \theta + y \sin \theta, \quad v_1 = w_1 - (x \cos \theta + y \sin \theta) w_2, \quad v_2 = w_2, \) 上述消去约束反力后的系统方程可变成如下标准形：

\[\dot{x}_1 = v_1, \quad \dot{x}_2 = v_2, \quad \dot{x}_3 = x_1 v_2, \quad H \ddot{x} + C \dot{x} + G = B u, \tag{13} \]

其中

\[
H = \begin{bmatrix} m & 0 & m \ddot{x}_1 \\ m \ddot{x}_1 & m \ddot{x}_1^2 + I_\theta \end{bmatrix}, \quad C = \begin{bmatrix} 0 & m \ddot{x}_1 \\ 0 & m \ddot{x}_1 \end{bmatrix}, \quad B = \frac{1}{R} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 + L \\ x_1 - L \end{bmatrix}, \quad G = 0. \]
应地，$\Phi(x, \dot{x}, \xi, \dot{\xi}) = \begin{bmatrix} \dot{\xi}_1 + x_1 \dot{\xi}_2 + x_2 \dot{\xi}_2 & 0 \\ x_1 \dot{\xi}_1 + x_2 \dot{\xi}_2 + x_3 \dot{\xi}_2 & \xi_3 \end{bmatrix}$，则控制律(8)和(9)镇定$x$和$v$到零点。

仿真中，假设 $a = [0.5 \text{ (kg)}, 0.5 \text{ (kg} \cdot \text{m/s})]^{\top}$, $R = L = 1 \text{ (m)}$；控制中取 $\omega = 1, k_1 = 0.5, k_2 = 0.4, k_3 = 5, K_p = \text{diag}(50, 50), \Gamma = \text{diag}(0.1, 0.1)$; $x(0) = [-0.8 \text{ (Rad)}, -0.5 \text{ (m)}, 0.4 \text{ (m)}]^{\top}$, $v(0) = [-0.55 \text{ (Rad/s)}, 4.2 \text{ (m/s)}]^{\top}$, $\dot{a}(0) = [1.5 \text{ (kg)}, 0.2 \text{ (kg} \cdot \text{m/s})]^{\top}$。

图1给出了x_1, x_2, x_3的响应曲线。

参考文献

董文杰1970年12月出生，北京航空航天大学博士生。研究领域为机器人动力学与控制、鲁棒控制、非线性系统控制等。

霍伟见本刊第20卷第3期。