2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主旋翼升力和机身姿态受限的模型直升机非线性控制

诸兵 霍伟

诸兵, 霍伟. 主旋翼升力和机身姿态受限的模型直升机非线性控制. 自动化学报, 2014, 40(11): 2654-2664. doi: 10.3724/SP.J.1004.2014.02654
引用本文: 诸兵, 霍伟. 主旋翼升力和机身姿态受限的模型直升机非线性控制. 自动化学报, 2014, 40(11): 2654-2664. doi: 10.3724/SP.J.1004.2014.02654
ZHU Bing, HUO Wei. Nonlinear Control for a Model-scaled Helicopter with Constraints on Rotor Thrust and Fuselage Attitude. ACTA AUTOMATICA SINICA, 2014, 40(11): 2654-2664. doi: 10.3724/SP.J.1004.2014.02654
Citation: ZHU Bing, HUO Wei. Nonlinear Control for a Model-scaled Helicopter with Constraints on Rotor Thrust and Fuselage Attitude. ACTA AUTOMATICA SINICA, 2014, 40(11): 2654-2664. doi: 10.3724/SP.J.1004.2014.02654

主旋翼升力和机身姿态受限的模型直升机非线性控制

doi: 10.3724/SP.J.1004.2014.02654
基金项目: 

Supported by National Natural Science Foundation of China (61074010)

Nonlinear Control for a Model-scaled Helicopter with Constraints on Rotor Thrust and Fuselage Attitude

Funds: 

Supported by National Natural Science Foundation of China (61074010)

  • 摘要: 针对主旋翼升力和机身姿态受限的6自由度模型无人直升机的轨迹跟踪控制问题设计了一种非线性控制器.在控制器设计过程中,直升机的数学模型被简化为三个子系统: 姿态子系统,纵-侧向子系统和高度子系统,所设计的控制器由针对这三个子系统的子控制器组成.纵-侧向和高度子控制器基于双曲正切函数进行设计,以保证满足受限条件; 姿态子控制器利用反步法设计,使得机身姿态能够跟踪纵-侧向和高度子系统的虚拟控制.本文在理论上证明了闭环系统跟踪误差最终有界,并且控制器满足受限条件.仿真结果证实了所设计控制器的性能.
  • [1] Shakernia O, Ma Y, Koo T J, Sastry S. Landing an unmanned air vehicle: vision based motion estimation and nonlinear control. Asian Journal of Control, 1999, 1(3): 128-145
    [2] Koo T J, Sastry S. Output tracking control design of a helicopter model based on approximate linearization. In: Proceedings of the 37th IEEE Conference on Decision and Control. Tempa, USA, 1998. 3635-3640
    [3] Raptis I A, Valavanis K P, Vachtsevanos G J. Linear tracking control for small-scale unmanned helicopters. IEEE Transactions on Control Systems Technology, 2012, 20(4): 995-1010
    [4] Raptis I A, Valavanis K P, Moreno W A. A novel nonlinear backstepping controller design for helicopters using the rotation matrix. IEEE Transactions on Control Systems Technology, 2011, 19(2): 465-473
    [5] Zhu B, Huo W. Robust nonlinear control for a model-scaled helicopter with parameter uncertainties. Nonlinear Dynamics, 2013, 73(1-2): 1139-1154
    [6] He Y Q, Han J D. Acceleration feedback enhanced H∞ disturbance attenuation control for a class of nonlinear underactuated vehicle systems. Acta Automatica Sinica, 2008, 34(5): 558-564
    [7] Gadewadikar J, Lewis F, Subbarao K, Chen B M. Structured H-infinity command and control-loop design for unmanned helicopters. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1093-1102
    [8] Cai G W, Chen B M, Dong X X, Lee T H. Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter. Mechatronics, 2011, 21(5): 803-820
    [9] Liu C J, Chen W H, Andrews J. Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers. Control Engineering Practice, 2012, 20(3): 258-268
    [10] Marchand N, Hably A. Global stabilization of multiple integrators with bounded controls. Automatica, 2005, 41(12): 2147-2152
    [11] Saberi A, Lin Z, Teel A R. Control of linear systems with saturating actuators. IEEE Transactions on Automatic Control, 1996, 41(3): 368-378
    [12] Sussman H J, Sontag E D, Yang Y. A general result on the stabilization of linear systems using bounded controls. IEEE Transactions on Automatic Control, 1994, 39(12): 2411-2425
    [13] Teel A R. Global stabilization and restricted tracking for multiple integrators with bounded controls. Systems & Control Letters, 1992, 18(3): 165-171
    [14] Wang Y, Ma R N. Global stabilization of feedforward nonlinear system based on nested saturated control. Acta Automatica Sinica, 2010, 36(4): 528-533
    [15] Zhou J, Wen C Y. Adaptive Backstepping Control of Uncertain Systems. Berlin: Springer-Verlag, 2008. 189-197
    [16] Mazenc F, Iggidr A. Backstepping with bounded feedbacks. Systems and Control Letters, 2004, 51(3-4): 235-245
    [17] Teel A R. A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Transactions on Automatic Control, 1996, 41(9): 1256-1270
    [18] Ailon A. Simple tracking controllers for autonomous VTOL aircraft with bounded inputs. IEEE Transactions on Automatic Control, 2010, 55(3): 737-743
    [19] Olfati-Saber R. Global configuration stabilization for the VTOL aircraft with strong input coupling. IEEE Transactions on Automatic Control, 2002, 47(11): 1949-1952
    [20] Hong Y, Yao B. A globally stable saturated desired compensation adaptive robust control for linear motor systems with comparative experiments. Automatica, 2007, 43(10): 1840-1848
    [21] Wang J J, Liu D L, Wang B J. Research on one type of saturated nonlinear stabilization control method of X-Z inverted pendulum. Acta Automatica Sinica, 2013, 39(1): 92-96
    [22] Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter. IEEE Transactions on Automatic Control, 2003, 48(3): 413-426
    [23] Marconi L, Naldi R. Robust full degree-of-freedom tracking control of a helicopter. Automatica, 2007, 43(11): 1909-1920
    [24] Sontag E D, Wang Y. New characterizations of input-to-state stability. IEEE Transactions on Automatic Control, 1996, 41(9): 1283-1294
    [25] Zhu B, Huo W. 3-D path-following control for a model-scaled autonomous helicopter. IEEE Transactions on Control Systems Technology, 2014, 22(5): 1927-1934
    [26] Bramwell A R S, Done G, Balmford D. Bramwell's Helicopter Dynamics (Second Edition). Butterworth Heinmann, 2001. 48-51
    [27] Gavrilets V. Autonomous Aerobatic Maneuvering of Miniature Helicopter [Ph.D. dissertation], Massachusetts Institute of Technology, 2003.
  • 加载中
计量
  • 文章访问数:  1448
  • HTML全文浏览量:  36
  • PDF下载量:  761
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-12
  • 修回日期:  2014-05-15
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回