2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信号重构的可重构机械臂主动分散容错控制

赵博 李元春

赵博, 李元春. 基于信号重构的可重构机械臂主动分散容错控制. 自动化学报, 2014, 40(9): 1942-1950. doi: 10.3724/SP.J.1004.2014.01942
引用本文: 赵博, 李元春. 基于信号重构的可重构机械臂主动分散容错控制. 自动化学报, 2014, 40(9): 1942-1950. doi: 10.3724/SP.J.1004.2014.01942
ZHAO Bo, LI Yuan-Chun. Signal Reconstruction Based Active Decentralized Fault Tolerant Control for Reconfigurable Manipulators. ACTA AUTOMATICA SINICA, 2014, 40(9): 1942-1950. doi: 10.3724/SP.J.1004.2014.01942
Citation: ZHAO Bo, LI Yuan-Chun. Signal Reconstruction Based Active Decentralized Fault Tolerant Control for Reconfigurable Manipulators. ACTA AUTOMATICA SINICA, 2014, 40(9): 1942-1950. doi: 10.3724/SP.J.1004.2014.01942

基于信号重构的可重构机械臂主动分散容错控制

doi: 10.3724/SP.J.1004.2014.01942
基金项目: 

国家自然科学基金(61374051,60974010),吉林省科技发展计划项目(20110705)资助

详细信息
    作者简介:

    赵博 吉林大学控制科学与工程系博士研究生.2009年获得吉林大学自动化专业学士学位.主要研究方向为故障诊断与容错控制,智能机械与机器人控制.E-mail:zhaob09@mails.jlu.edu.cn

    通讯作者:

    李元春 长春工业大学控制工程系教授.主要研究方向为复杂系统建模,智能机械与机器人控制.本文通信作者.E-mail:liyc@mail.ccut.edu.cn

Signal Reconstruction Based Active Decentralized Fault Tolerant Control for Reconfigurable Manipulators

Funds: 

Supported by National Natural Science Foundation of China (61374051, 60974010), Scientific and Technological Development Plan Project of Jilin Province (20110705)

  • 摘要: 针对可重构机械臂系统传感器故障,提出一种基于信号重构的主动分散容错控制方法. 基于可重构机械臂系统模块化属性,采用自适应模糊分散控制系统实现正常工作模式时模块关节的轨迹跟踪控制. 当在线检测出位置或速度传感器故障时,分别采用数值积分器或微分跟踪器重构相应信号,并以之代替故障信号进行反馈实现系统的主动容错控制. 此方法充分利用了冗余信息,避免了故障关节控制性能的下降对其他关节的影响. 数值仿真结果验证了所提出容错控制方法的有效性.
  • [1] Paredis C J J, Brown H B, Khosla P K. Rapidly deployable manipulator system. Robotics and Autonomous Systems, 1997, 21(3): 289-304
    [2] Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933-1943(周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933-1943)
    [3] Chen Zong-Ji, Zhang Ru-Lin, Zhang Ping, Zhou Rui. Flight control: challenges and opportunities. Acta Automatica Sinica, 2013, 39(6): 703-710(陈宗基, 张汝麟, 张平, 周锐. 飞行器控制面临的机遇与挑战. 自动化学报, 2013, 39(6): 703-710)
    [4] Edwards C, Alwi H, Tan C P. Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems. International Journal of Applied Mathematics and Computer Science, 2012, 22(1): 109-124
    [5] Liu Chun-Sheng, Jiang Bin. H2 fault tolerant controller design for a class of nonlinear systems with a spacecraft control application. Acta Automatica Sinica, 2013, 39(2): 188-196(刘春生, 姜斌. 一类非线性系统的H2容错控制器的设计及其在空间飞行器的应用. 自动化学报, 2013, 39(2): 188-196)
    [6] Siqueira A A G, Terra M H, Buosi C. Fault-tolerant robot manipulators based on output-feedback H∞ controllers. Robotics and Autonomous Systems, 2007, 55(10): 785-794
    [7] Mirzaee A, Salahshoor K. Fault diagnosis and accommodation of nonlinear systems based on multiple-model adaptive unscented Kalman filter and switched MPC and H-infinity loop-shaping controller. Journal of Process Control, 2012, 22(3): 626-634
    [8] Tan C P, Habib M K. The development of a fault-tolerant control approach and its implementation on a flexible arm robot. Advanced Robotics, 2007, 21(8): 887-904
    [9] de Silva C W, Wong K. Online fault identification and fault-tolerant control of a multi-module manipulator. International Journal of Robotics and Automation, 2010, 25(3): 217-228
    [10] Edwards C, Tan C P. Sensor fault tolerant control using sliding mode observers. Control Engineering Practice, 2006, 14(8): 897-908
    [11] Izumikawa Y, Yubai K, Hirai J. Fault-tolerant control system of flexible arm for sensor fault by using reaction force observer. IEEE/ASME Transactions on Mechatronics, 2005, 10(4): 391-396
    [12] Wu G Q, Lin B J, Zhang S C. Fault-tolerant backstepping attitude control for autonomous airship with sensor failure. Procedia Engineering, 2012, 29: 2022-2027
    [13] Talebi H A, Khorasani K, Tafazoli S. A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem. IEEE Transactions on Neural Networks, 2009, 20(1): 45-60
    [14] Dhahri S, Sellami A, Hmida F B. Robust sensor fault detection and isolation for a steer-by-wire system based on sliding mode observer. In: Proceedings of the 2012 IEEE Mediterranean Electrotechnical Conference-MELECON. Hammamet, Tunisia: IEEE, 2012. 450-454
    [15] Ahmad S, Zhang H W, Liu G J. Distributed fault detection for modular and reconfigurable robots with joint torque sensing: a prediction error based approach. Mechatronics, 2013, 23(6): 607-616
    [16] Yuan J, Liu G J, Wu B. Power efficiency estimation based health monitoring and fault detection of modular and reconfigurable robot. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4880-4887
    [17] Abdul S, Liu G J. Decentralised fault tolerance and fault detection of modular and reconfigurable robots with joint torque sensing. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation. Pasadena, CA: IEEE, 2008. 3520-3526
    [18] Zhu Ming-Chao, Li Yuan-Chun, Jiang Ri-Hua. Decentralized fault tolerant control for reconfigurable modular robots. Control and Decision, 2009, 24(8): 1247-1251, 1256(朱明超, 李元春, 姜日花. 可重构模块机器人分散容错控制. 控制与决策, 2009, 24(8): 1247-1251, 1256)
    [19] Ogita T, Yubai K, Hirai J. Construction of fault-tolerant control system for fixed fault in a reconfigurable robot. Advanced Science Letters, 2012, 15(1): 315-320
    [20] Zhao Bo, Li Yuan-Chun, Liu Ke-Ping. Effectiveness factor integrated decentralized fault tolerant control scheme for reconfigurable manipulators. Journal of Tsinghua University (Science and Technology), 2012, 52(9): 1218-1222, 1229(赵博, 李元春, 刘克平. 有效因子融合的可重构机械臂分散容错控制方法. 清华大学学报(自然科学版), 2012, 52(9): 1218-1222, 1229)
    [21] Li Yuan-Chun, Lu Peng, Zhao Bo. Backstepping time delay decentralized fault-tolerant control for reconfigurable manipulators. Control and Decision, 2012, 27(3): 446-450(李元春, 陆鹏, 赵博. 可重构机械臂反演时延分散容错控制. 控制与决策, 2012, 27(3): 446-450)
    [22] Zhao B, Li Y C. Multisensor fault identification scheme based on decentralized sliding mode observers applied to reconfigurable manipulators. Mathematical Problems in Engineering, 2013, Article ID 327916, DOI: 10.1155/2013/327 916
    [23] Hu Zhi-Kun, Sun Yan, Jiang Bin, He Jing, Zhang Chang-Fan. An optimal unknown input observer based fault diagnosis method. Acta Automatica Sinica, 2013, 39(8): 1225-1230(胡志坤, 孙岩, 姜斌, 何静, 张昌凡. 一种基于最优未知输入观测器的故障诊断方法. 自动化学报, 2013, 39(8): 1225-1230)
    [24] Frogerais P, Bellanger J J, Senhadji L. Various ways to compute the continuous-discrete extended kalman filter. IEEE Transactions on Automatic Control, 2012, 57(4): 1000-1004
    [25] Qi Guo-Qing, Chen Li, Li Yin-Ya, Sheng An-Dong. A bias-allowable estimator for continuous-time system. Control Theory and Applications, 2010, 27(2): 193-198(戚国庆, 陈黎, 李银伢, 盛安冬. 连续系统下的一种容偏估计策略. 控制理论与应用, 2010, 27(2): 193-198)
    [26] Xu Tao. Numerical Calculation Method. Changchun: Jilin Science and Technology Press, 1998.(徐涛. 数值计算方法. 长春: 吉林科学技术出版社, 1998.)
    [27] Pu Ming, Wu Qing-Xian, Jiang Chang-Sheng, Dian Song-Yi, Wang Yu-Fei. Recursive terminal sliding mode control for higher-order nonlinear system with mismatched uncertainties. Acta Automatica Sinica, 2012, 38(11): 1777-1793(蒲明, 吴庆宪, 姜长生, 佃松宜, 王宇飞. 非匹配不确定高阶非线性系统递阶Terminal滑模控制. 自动化学报, 2012, 38(11): 1777-1793)
  • 加载中
计量
  • 文章访问数:  1920
  • HTML全文浏览量:  53
  • PDF下载量:  972
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-19
  • 修回日期:  2013-12-11
  • 刊出日期:  2014-09-20

目录

    /

    返回文章
    返回