2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多元混沌时间序列的相关状态机预测模型研究

韩敏 许美玲 任伟杰

韩敏, 许美玲, 任伟杰. 多元混沌时间序列的相关状态机预测模型研究. 自动化学报, 2014, 40(5): 822-829. doi: 10.3724/SP.J.1004.2014.00822
引用本文: 韩敏, 许美玲, 任伟杰. 多元混沌时间序列的相关状态机预测模型研究. 自动化学报, 2014, 40(5): 822-829. doi: 10.3724/SP.J.1004.2014.00822
HAN Min, XU Mei-Ling, REN Wei-Jie. Research on Multivariate Chaotic Time Series Prediction Using mRSM Model. ACTA AUTOMATICA SINICA, 2014, 40(5): 822-829. doi: 10.3724/SP.J.1004.2014.00822
Citation: HAN Min, XU Mei-Ling, REN Wei-Jie. Research on Multivariate Chaotic Time Series Prediction Using mRSM Model. ACTA AUTOMATICA SINICA, 2014, 40(5): 822-829. doi: 10.3724/SP.J.1004.2014.00822

多元混沌时间序列的相关状态机预测模型研究

doi: 10.3724/SP.J.1004.2014.00822
基金项目: 

国家重点基础研究发展计划(973计划)(2013CB430403),国家自然科学基金(61374154)资助

详细信息
    作者简介:

    许美玲 大连理工大学电子信息与电气工程学部博士研究生. 2011 年获得大连理工大学工学学士学位. 主要研究方向为神经网络和多元时间序列预测.E-mail:xuml@mail.dlut.edu.cn

Research on Multivariate Chaotic Time Series Prediction Using mRSM Model

Funds: 

Supported by National Basic Research Program of China (973 Program) (2013CB430403), National Natural Science Foundation of China (61374154)

  • 摘要: 针对多元混沌时间序列预测存在的过拟合问题及高维输入变量冗余问题,提出一种新型的多变量稀疏化预测模型——多元相关状态机.该模型采用主成分分析方法对相空间重构后的高维输入变量进行低维表示,将动态储备池作为相关向量机的核函数,充分映射多元混沌时间序列的动力学特性,使得模型具有丰富的动态机制和良好的稀疏性能,有效避免过拟合问题,提高预测精度.基于两组多元混沌时间序列的仿真实验验证了模型的有效性.
  • [1] Gao Chuan-Hou, Jian Ling, Chen Ji-Ming, Sun You-Xian. Data-driven modeling and predictive algorithm for complex blast furnace ironmaking process. Acta Automatica Sinica, 2009, 35(6): 725-730 (郜传厚, 渐令, 陈积明, 孙优贤. 复杂高炉炼铁过程的数据驱动建模及预测算法. 自动化学报, 2009, 35(6): 725-730)
    [2] Rong T Z, Xiao Z. Nonparametric interval prediction of chaotic time series and its application to climatic system. International Journal of Systems Science, 2013, 44(9): 1726-1732
    [3] Han Min, Liu Xiao-Xin. Stepwise input variable selection based on mutual information for multivariate forecasting. Acta Automatica Sinica, 2012, 38(6): 1000-1005 (韩敏, 刘晓欣. 基于互信息的分步式输入变量选择多元序列预测研究. 自动化学报, 2012, 38(6): 1000-1005)
    [4] Shen M, Chen W N, Zhang J, Chung S H, Kaynak O. Optimal selection of parameters for nonuniform embedding of chaotic time series using ant colony optimization. IEEE Transactions on Cybernetics, 2013, 43(2): 790-802
    [5] Ma Z M. Sparse principal component analysis and iterative thresholding. The Annals of Statistics, 2013, 41(2): 772-801
    [6] Abdi H, Williams L J. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459
    [7] Deng Wan-Yu, Zheng Qing-Hua, Chen Lin, Xu Xue-Bin. Research on extreme learning of neural networks. Chinese Journal of Computers, 2010, 33(2): 279-287 (邓万宇, 郑庆华, 陈琳, 许学斌. 神经网络极速学习方法研究. 计算机学报, 2010, 33(2): 279-287)
    [8] Buonomano D V. Harnessing chaos in recurrent neural networks. Neuron, 2009, 63(4): 423-425
    [9] Li Peng-Hua, Chai Yi, Xiong Qing-Yu. Quantum gate Elman neural network and its quantized extended gradient backpropagation training algorithm. Acta Automatica Sinica, 2013, 39(9): 1511-1522 (李鹏华, 柴毅, 熊庆宇. 量子门Elman神经网络及其梯度扩展的量子反向传播学习算法. 自动化学报, 2013, 39(9): 1511-1522)
    [10] Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science, 2004, 304(5667): 78-80
    [11] Yildiz I B, Jaeger H, Kiebel S J. Re-visiting the echo state property. Neural Networks, 2012, 35: 1-9
    [12] Boccato L, Lopes A, Attux R, Von Zuben F J. An extended echo state network using Volterra filtering and principal component analysis. Neural Networks, 2012, 32: 292-302
    [13] Wang Y G, Cao F L, Yuan Y B. A study on effectiveness of extreme learning machine. Neurocomputing, 2011, 74(16): 2483-2490
    [14] Dutoit X, Schrauwen B, Van Campenhout J, Stroobandt D, Van Brussel H, Nuttin M. Pruning and regularization in reservoir computing. Neurocomputing, 2009, 72(7-9): 1534-1546
    [15] Xu Z B, Guo H L, Wang Y, Zhang H. Representative of L1/2 regularization among Lq(0 Acta Automatica Sinica, 2012, 38(7): 1225-1228
    [16] Tipping M E. Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 2001, 1: 211-244
    [17] Xu Dan-Lei, Du Lan, Liu Hong-Wei, Hong Ling, Li Yan-Bing. Joint feature selection and classification design based on variational relevance vector machine. Acta Automatica Sinica, 2011, 37(8): 932-943 (徐丹蕾, 杜兰, 刘宏伟, 洪灵, 李彦兵. 一种基于变分相关向量机的特征选择和分类结合方法. 自动化学报, 2011, 37(8): 932-943)
    [18] Han Min, Shi Zhi-Wei, Guo Wei. Reservoir neural state reconstruction and chaotic time series prediction. Acta Physica Sinica, 2007, 56(1): 43-50 (韩敏, 史志伟, 郭伟. 储备池状态空间重构与混沌时间序列预测. 物理学报, 2007, 56(1): 43-50)
    [19] Peng Yu, Wang Jian-Min, Peng Xi-Yuan. Survey on reservoir computing. Acta Electronica Sinica, 2011, 39(10): 2387-2396 (彭宇, 王建民, 彭喜元. 储备池计算概述. 电子学报, 2011, 39(10): 2387-2396)
    [20] Girard A, Rasmussen C E, Candela J Q, Murray-Smith R. Gaussian Process priors with uncertain inputs-Application to multiple-step ahead time series forecasting. In: Proceedings of Advances in Neural Information Processing Systems. Cambridge, Massachusetts, USA: MIT Press 2003. 529-536
    [21] Nakajima S, Sugiyama M. Theoretical analysis of Bayesian matrix factorization. The Journal of Machine Learning Research, 2011, 12: 2583-2648
    [22] Shi Z W, Han M. Support vector echo-state machine for chaotic time-series prediction. IEEE Transactions on Neural Networks, 2007, 18(2): 359-372
    [23] Han Min, Wang Ya-Nan. Prediction of multivariate time series based on reservoir principal component analysis. Control and Decision, 2009, 24(10): 1526-1530 (韩敏, 王亚楠. 基于储备池主成分分析的多元时间序列预测研究. 控制与决策, 2009, 24(10): 1526-1530)
  • 加载中
计量
  • 文章访问数:  1944
  • HTML全文浏览量:  46
  • PDF下载量:  1146
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-17
  • 修回日期:  2013-08-01
  • 刊出日期:  2014-05-20

目录

    /

    返回文章
    返回