2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微操作/微装配中微力觉的测量与控制技术研究现状综述

沈飞 徐德 唐永建 吴文荣 余大海

沈飞, 徐德, 唐永建, 吴文荣, 余大海. 微操作/微装配中微力觉的测量与控制技术研究现状综述. 自动化学报, 2014, 40(5): 785-797. doi: 10.3724/SP.J.1004.2014.00785
引用本文: 沈飞, 徐德, 唐永建, 吴文荣, 余大海. 微操作/微装配中微力觉的测量与控制技术研究现状综述. 自动化学报, 2014, 40(5): 785-797. doi: 10.3724/SP.J.1004.2014.00785
SHEN Fei, XU De, TANG Yong-Jian, WU Wen-Rong, YU Da-Hai. Review of Measuring and Control Technology of Microforce in Micromanipulation and Microassembly. ACTA AUTOMATICA SINICA, 2014, 40(5): 785-797. doi: 10.3724/SP.J.1004.2014.00785
Citation: SHEN Fei, XU De, TANG Yong-Jian, WU Wen-Rong, YU Da-Hai. Review of Measuring and Control Technology of Microforce in Micromanipulation and Microassembly. ACTA AUTOMATICA SINICA, 2014, 40(5): 785-797. doi: 10.3724/SP.J.1004.2014.00785

微操作/微装配中微力觉的测量与控制技术研究现状综述

doi: 10.3724/SP.J.1004.2014.00785
基金项目: 

国家自然科学基金(61227804,61105036)和中国博士后科学基金资助项目资助

详细信息
    作者简介:

    徐德 中国科学院自动化研究所研究员. 主要研究方向为机器人学及自动化,机器人的视觉控制和智能控制.E-mail:de.xu@ia.ac.cn

Review of Measuring and Control Technology of Microforce in Micromanipulation and Microassembly

Funds: 

Supported by National Natural Science Foundation of China (61227804, 61105036) and China Postdoctoral Science Foundation

  • 摘要: 微力觉的测量与控制技术是微操作/微装配领域内的核心内容和难点课题,是满足微器件可靠操作与无损装配要求的重要技术保障之一.本文介绍了微操作/微装配机器人系统的典型框架,并对各分系统的研究要点做了分析与回顾.然后,从微力觉的特点、微力测量方法与传感器、微力觉控制三个方面对微力觉的测量与控制技术的发展现状进行了综述.着重介绍了近些年在远程微操作系统和微操作/微装配系统中微力觉控制的方法及核心研究内容的研究成果.在此基础上,提出了微力觉测量与控制亟待解决的一些关键问题,并对这些关键问题的解决方案进行了探讨.最后,对微力觉的发展前景和方向进行了展望.
  • [1] Brussel H V, Peirs J, Reynaerts D, Delchambre A, Reinhart G, Roth N, Weck M, Zussman E. Assembly of microsystems. CIRP Annals-Manufacturing Technology, 2000, 49(2): 451-472
    [2] Fluitman J. Microsystems technology: objectives. Sensors and Actuators A, 1996, 56(1-2): 151-166
    [3] Li Jun-Lan, Zhang Da-Wei, Wang Yi-Zhong, Zhao Xing-Yu, Kong Fan-Zhi. Micro-vision position systems for IC packaging. Optics and Precision Engineering, 2010, 18(4): 965-972(李君兰, 张大卫, 王以忠, 赵兴玉, 孔凡芝. 面向IC封装的显微视觉定位系统. 光学精密工程, 2010, 18(4): 965-972)
    [4] Sui Li, Shi Geng-Chen, Mu Bin. Study on micro-assembly of fuze MEMS mechanisms. Journal of Detection & Control, 2008, 30(3): 64-67, 71(隋丽, 石庚辰, 穆斌. 引信MEMS机构微装配研究. 探测与控制学报, 2008, 30(3): 64-67, 71)
    [5] Sun Y, Nelson B J. Biological cell injection using an autonomous microrobotic system. International Journal of Robotics Research, 2002, 21(10-11): 861-868
    [6] Wang Hui-Xiang, Chen Li-Guo, Sun Li-Ning, Liu Ya-Xin. Design of micromanipulation instrument for bio-microdissection. Optics and Precision Engineering, 2006, 14(3): 416-421(王会香, 陈立国, 孙立宁, 刘亚欣. 生物显微切割微操作仪的设计与研制. 光学精密工程, 2006, 14(3): 416-421)
    [7] Wu Wen-Rong, Yu Da-Hai, Qiu Zu-Rong, Huang Xin-Han, Wang Hong-Lian, Luo Min. Development of semi-automatic micro-assembly system for millimeter device. Transducer and Microsystem Technologies, 2013, 32(1): 83-86, 90(吴文荣, 余大海, 裘祖荣, 黄心汉, 王红莲, 罗敏. 毫米器件半自动微装配系统研制. 传感器与微系统, 2013, 32(1): 83-86, 90)
    [8] Cecil J, Powell D, Vasquez D. Assembly and manipulation of micro devices——a state of the art survey. Robotics and Computer-Integrated Manufacturing, 2007, 23(5): 580-588
    [9] Popa D O, Stephanou H E. Micro and mesoscale robotic assembly. Journal of Manufacturing Processes, 2004, 6(1): 52-71
    [10] Liu Yi-Yang, Wang Yue-Chao, Yu Peng, Dong Zai-Li. An overview of micro-force sensing methods in micromanipulation and microassembly. Chinese Journal of Scientific Instrument, 2008, 29(4): 155-158(刘意杨, 王越超, 于鹏, 董再励. 微操作与微装配中微力感知方法的综述. 仪器仪表学报, 2008, 29(4): 155-158)
    [11] Tichem M, Lang D, Karpuschewski B. A classification scheme for quantitative analysis of micro-grip principles. Assembly Automation, 2004, 24(1): 88-93
    [12] Duc T C, Lau G, Creemer J F, Sarro P M. Electrothermal microgripper with large jaw displacement and integrated force sensors. Journal of Microelectromechanical Systems, 2008, 17(6): 1546-1555
    [13] Nogimori W, Irisa K, Ando M, Naruse Y. A laser-powered micro-gripper. In: Proceedings of the 1997 International Workshop on Micro Electro Mechanical Systems. Nagoya, Japan: IEEE, 1997. 267-271
    [14] Li Qing-Xiang, Li Yu-He. Basic Technology on Microassembly and Micromanipulation. Beijing: Tsinghua University Press, 2004. 9-64 (李庆祥, 李玉和. 微装配与微操作技术. 北京: 清华大学出版社, 2004. 9-64)
    [15] Walle B L, Gauthier M, Chaillet N. Principle of a submerged freeze gripper for micro-assembly. IEEE Transactions on Robotics, 2008, 24(4): 897-902
    [16] Arai F, Fukuda T. A new pick up and release method by heating for micromanipulation. In: Proceedings of the 10th Annual International Workshop on Micro Electro Mechanical Systems. Nagoya, Japan: IEEE, 1997. 383-388
    [17] Reinhart G, Hoeppner J. Non-contact wafer handling using high-intensity ultrasonic. CIRP Annals-Manufacturing Technology, 2000, 49(1): 5-8
    [18] Vandaele V, Lambert P, Delchambre A. Non-contact handling in microassembly: acoustical levitation. Precision Engineering, 2005, 29(4): 491-505
    [19] Rambin C L, Warrington R O. Micro-assembly with a focused laser beam. In: Proceedings of the 1994 IEEE Workshop on Micro Electro Mechanical Systems. Oiso, Japan: IEEE, 1994. 285-290
    [20] Grutzeck H, Kiesewetter L. Downscaling of grippers for micro assembly. Microsystem Technologies, 2002, 8(1): 27-31
    [21] Sun Li-Ning, Chen Li-Guo, Liu Pin-Kuan, Rong Wei-Bin. Some issues on the micro-vision system for a micromanipulation robot. Optics and Precision Engineering, 2002, 10(2): 171-175 (孙立宁, 陈立国, 刘品宽, 荣伟斌. 微操作机器人显微视觉系统若干问题. 光学精密工程, 2002, 10(2): 171-175)
    [22] Hu Xiao-Ping, Zuo Fu-Yong, Xie Ke. Research on hand-eye calibration method for micro-assembly robot. Chinese Journal of Scientific Instrument, 2012, 33(7): 1521-1526 (胡小平, 左富勇, 谢珂. 微装配机器人手眼标定方法研究. 仪器仪表学报, 2012, 33(7): 1521-1526)
    [23] Xie Hui, Sun Li-Ning, Rong Wei-Bin, Chen Li-Guo. Vision guided self-calibration of the micromanipulation robot. Opto-Electronic Engineering, 2005, 32(3): 32-35(谢晖, 孙立宁, 荣伟彬, 陈立国. 微操作机器人的显微视觉自标定方法. 光电工程, 2005, 32(3): 32-35)
    [24] Pech-Pacheco J L, Cristobal G. Diatom autofocusing in brightfield microscopy: a comparative study. In: Proceedings of the 15th International Conference on Pattern Recognition. Barcelona, Spain: IEEE, 2000. 314-317
    [25] Lv Xia-Dong, Huang Xin-Han, Wang Min. Microscopic visual servoing for microassembly robot depth motion based on defocus image features. Robot, 2007, 29(4): 357-362(吕遐东, 黄心汉, 王敏. 基于散焦图像特征的微装配机器人深度运动显微视觉伺服. 机器人, 2007, 29(4): 357-362)
    [26] Jiang Zhi-Guo, Han Dong-Bing, Yuan Tian-Yun, Zhao Yu, Xie Feng-Ying. Study on auto focusing algorithm for automatic microscope. Journal of Image and Graphics, 2004, 9(4): 396-401(姜志国, 韩冬兵, 袁天云, 赵宇, 谢凤英. 基于全自动控制显微镜的自动聚焦算法研究. 中国图象图形学报, 2004, 9(4): 396-401)
    [27] Sun Y, Duthaler S, Nelson B J. Autofocusing algorithm selection in computer microscopy. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Alberta, Canada: IEEE, 2005. 70-76
    [28] Zhao Xin, Sun Ming-Zhu, Lu Gui-Zhang, Yu Bin. An approach to extract depth information of micro tool by microscopic image processing. Acta Automatica Sinica, 2007, 33(9): 917-923(赵新, 孙明竹, 卢桂章, 余斌. 基于显微图像处理的微操作工具深度信息提取方法. 自动化学报, 2007, 33(9): 917-923)
    [29] Buerkle A, Fatikow S. Laser-measuring system for a flexible microrobot-based micromanipulation station. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu, Japan: IEEE, 2000. 799-804
    [30] Sano T, Yamamoto H. Study of micromanipulation using stereoscopic microscope. IEEE Transactions on Instrumentation and Measurement, 2002, 51(2): 182-187
    [31] Sulzer J, Kovac I. Enhancement of positioning accuracy of industrial robots with a reconfigurable fine-positioning module. Precision Engineering, 2010, 34(2): 201-217
    [32] Fearing R S. Survey of sticking effects for micro-parts. In: Proceedings of the 1995 IEEE Conference on Robotics and Intelligent Systems. Pittsburgh, USA: IEEE, 1995. 212-217
    [33] Zhou S A. On forces in microelectromechanical systems. International Journal of Engineering Science, 2003, 41(3-5): 313-335
    [34] Israelachvili J. Intermolecular and Surface Forces. New York: Academic Press, 1992. 83-107
    [35] Visser J. Particle adhesion and removal: a review. Particulate Science and Technology, 1995, 13(3-4): 169-196
    [36] Kitchener J A. Surface forces in the deposition of small particles. Journal of the Society of Cosmetic Chemists, 1973, 24(11): 709-725
    [37] Li Gui-Xian, Peng Yun-Feng. Analysis of micro-forces in MEMS. Journal of Harbin Institute of Technology, 2006, 38(8): 1318-1322(李瑰贤, 彭云峰. 微机械中微观力的几个关键问题分析. 哈尔滨工业大学学报, 2006, 38(8): 1318-1322)
    [38] Tamadazte B, Piat N L F, Dembele S. Robotic micromanipulation and microassembly using monoview and multiscale visual servoing. IEEE Transactions on Mechatronics, 2011, 16(2): 277-287
    [39] Tamadazte B, Piat N L F, Marchand E. A direct visual servoing scheme for automatic nanopositioning. IEEE Transactions on Mechatronics, 2011, 17(4): 728-736
    [40] Tamadazte B, Marchand E, Dembele S, Piat N L F. CAD model-based tracking and 3D visual-based control for MEMS microassembly. International Journal of Robotics Research, 2010, 29(11): 1416-1434
    [41] Tamadazte B, Piat N L F, Dembele S, Marchand E. Microassembly of complex and solid 3D MEMS by 3D vision-based control. In: Proceedings of the 2009 IEEE International Conference on Intelligent Robots and Systems. St. Louis, USA: IEEE, 2009. 3284-3289
    [42] Wang L D, Ren L, Mills J K, Cleghorn W L. Automated 3-D micrograsping tasks performed by Vision-Based Control. IEEE Transactions on Automation Science and Engineering, 2010, 7(3): 417-426
    [43] Tao X, Sharifi J F, Cho H. An active zooming strategy for variable field of view and depth of field in vision-based microassembly. IEEE Transactions on Automation Science and Engineering, 2009, 6(3): 504-513
    [44] Enikov E T, Minkov L L, Clark S. Microassembly experiments with transparent electrostatic gripper under optical and vision-based control. IEEE Transactions on Industrial Electronics, 2005, 52(4): 1005-1012
    [45] Ferreira A, Cassier C, Hirai S. Automatic microassembly system assisted by vision servoing and virtual reality. IEEE Transactions on Mechatronics, 2004, 9(2): 321-333
    [46] Wang J, Liu A, Tao X D, Cho H. Microassembly of micropeg and hole using uncalibrated visual servoing method. Precision Engineering, 2008, 32(3): 173-181
    [47] Ralis S J, Vikramaditya B, Nelson B J. Micropositioning of a weakly calibrated microassembly system using coarse-to-fine visual servoing strategies. IEEE Transaction on Electronics Packaging Manufacturing, 2000, 23(2): 123-131
    [48] Wu Jian-Hua. Research on Efficient Automated Micro Assembly Technology [Ph.D. dissertation], University of Science and Technology of China, China, 2007(吴建华. 高效率的微器件自动装配技术研究 [博士学位论文], 中国科技大学博士学位论文, 中国, 2007)
    [49] Zhou Y, Nelson B J, Vikramaditya B. Fusing force and vision feedback for micromanipulation. In: Proceeding of the 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium: IEEE, 1998. 1220-1225
    [50] Tian Wen-Chao, Jia Jian-Yuan. Sticking research of MEMS. Chinese Journal of Scientific Instrument, 2003, 24(S1): 582-584(田文超, 贾建援. MEMS粘附问题研究. 仪器仪表学报, 2003, 24(S1): 582-584)
    [51] Wang Jia-Chou, Rong Wei-Bin, Sun Li-Ning. Force sensing and control in micro-manipulation. Piezoelectectrics & Acoustooptics, 2007, 29(4): 464-467 (王家畴, 荣伟彬, 孙立宁. 微操作中力的检测及控制. 压电与声光, 2007, 29(4): 464-467)
    [52] Nikoobin A, Niak M H. Deriving and analyzing the effective parameters in microgrippers performance. Scientia Iranica, Transactions B: Mechanical Engineering, 2012, 19(6): 1554-1563
    [53] Chen T, Sun L N, Chen L G, Rong W B, Li X X. A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sensors and Actuators A, 2010, 158(2): 320-327
    [54] Wilson S A, Jourdain R P J, Zhang Q. New materials for micro-scale sensors and actuators: an engineering review. Materials Science and Engineering, 2007, 56(1-6): 1-129
    [55] Lu Z, Chen P C Y, Lin W. Force sensing and control in micromanipulation. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2006, 36(6): 713-724
    [56] Fahlbusch S, Fatikow S. Force sensing in microrobotic systems——an overview. In: Proceeding of the 1998 IEEE International Conference on Electronics, Circuits and Systems. Piscataway, USA: IEEE, 1998. 259-262
    [57] Fung C K M, Elhajj I, Li W J, Xi N. A 2-D PVDF force sensing system for micro-manipulation and micro-assembly. In: Proceeding of the 2002 IEEE International Conference on Robotics and Automation. Washington D.C., USA: IEEE, 2002. 1489-1494
    [58] Nonnenmacher M, Vaez-Iravani M, Wickramasinghe H K. Attractive mode force microscopy using a feedback-controlled fiber interferometer. Review of Scientific Instruments, 1992, 63(11): 5373-5376
    [59] Kato N, Suzuki I, Kikuta H, Iwata K. Force-balancing force sensor with an optical lever. Review of Scientific Instruments, 1995, 66(12): 5532-5536
    [60] Cloud G L. Optical Methods of Engineering Analysis. New York: Cambridge University Press, 1995
    [61] Bai Chun-Li, Tian Fang. The scanning force microscopy (SFM). Modern Scientific Instruments, 1998, (3): 79-83(白春礼, 田芳. 扫描力显微镜. 现代科学仪器, 1998, (3): 79-83)
    [62] Arai F, Nonoda Y, Fukuda T, Oota T. New force measurement and micro grasping method using laser Raman spectrophotometer. In: Proceeding of the 1996 IEEE International Conference on Robotics and Automation. Minneapolis, USA: IEEE, 1996. 2220-2225
    [63] Benrakkad M S, Benitez M A, Esteve J, Lopez-Villegas J M, Samitier J, Morante J R. Stress measurement by microRaman spectroscopy of polycrystalline silicon structures. Journal of Micromechanics and Microengineering, 1995, 5(2): 132-135
    [64] Nelson B J, Zhou Y, Vikramaditya B. Sensor-based micro-assembly of hybrid MEMS devices. IEEE Control Systems, 1998, 18(6): 35-45
    [65] Fahlbusch S, Shirinov A, Fatikow S. AFM-based micro force sensor and haptic interface for a nanohandling robot. In: Proceeding of the 2002 IEEE International Conference on Intelligent Robots and Systems. Lausanne, Switzerland: IEEE, 2002. 1772-1777
    [66] Tian X J, Jiao N D, Liu L Q, Wang Y C, Xi N, Li W J, Dong Z L. An AFM based nanomanipulation system with 3D Nano forces feedback. In: Proceeding of the 2004 IEEE International Conference on Intelligent Mechatronics and Automation. Chengdu, China: IEEE, 2004. 18-22
    [67] Greminger M A, Nelson B J. Vision-based force measurement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(3): 290-298
    [68] Li F D, Xu D, Shi Y L, Zhang Z T. Development of vision-based force measurement. In: Proceeding of the 31st Chinese Control Conference. Hefei, China: IEEE, 2012. 3769-3773
    [69] Chen Hai-Chu, Zhang Rui-Hua. Research on 3 dimentional micro force sensor for micro assembly. Piezoelectrics & Acoustooptics, 2007, 29(3): 280-282(陈海初, 张蕊华. 用于微装配的三维微力传感器的研究. 压电与声光, 2007, 29(3): 280-282)
    [70] Rong Wei-Bin, Wang Jia-Chou, Zhao Yu-Long, Chen Li-Guo, Sun Li-Ning. Research on a tri-axial force sensor based on MEMS technology for micromanipulation. Chinese Journal of Scientific Instrument, 2007, 28(4): 692-698(荣伟彬, 王家畴, 赵玉龙, 陈立国, 孙立宁. 基于MEMS技术的微操作三维力传感器研究. 仪器仪表学报, 2007, 28(4): 692-698)
    [71] Liu Y Y, Yu P, Wang Y C, Dong Z L, Xi N. Design and development of a micro-force sensing device. In: Proceeding of the 2007 IEEE International Conference on Robotics and Biomimetics. Sanya, China: IEEE, 2007. 77-81
    [72] Carrozza M C, Eisinberg A, Menciassi A, Campolo D, Micera S, Dario P. Towards a force-controlled microgripper for assembling biomedical microdevices. Journal of Micromechanics and Microengineering, 2000, 10(2): 271-276
    [73] Arai F, Kawaji A, Sugiyama T, Onomura Y, Ogawa M, Fukuda T, Iwata H, Itoigawa K. 3D micromanipulation system under microscope. In: Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. Nagoya, Japan: IEEE, 1998. 127-134
    [74] Sun Y, Wan K T, Roberts K P, Bischof J C, Nelson B J. Mechanical property characterization of mouse zona pellucida. IEEE/ASME Transactions on Nanobio-Science, 2003, 2(4): 279-286
    [75] Kim D H, Kim B, Kang H, Ju B K. Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003. 1864-1869
    [76] Kleinke D K, Uras H M. A magnetostrictive force sensor. Review of Scientific Instruments, 1994, 65(5): 1699-1710
    [77] Colgate J E. Robust impedance shaping telemanipulation. IEEE Transactions on Robotics and Automation, 1993, 9(4): 374-384
    [78] Kaneko K, Tokashiki H, Tanie K, Komoriya K. Impedance shaping based on force feedback bilateral control in macro-micro tele-operation system. In: Proceeding of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque, USA: IEEE, 1997. 710-717
    [79] Goldfarb M. Dimensional analysis and selective distortion in scaled bilateral telemanipulation. In: Proceeding of the 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium: IEEE, 1998. 1609-164
    [80] Thompson J A, Fearing R S. Automating microassembly with ortho-tweezers and force sensing. In: Proceeding of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, HI, USA: IEEE, 2001. 1327-1334
    [81] Tanikawa T, Kawai M, Koyachi N, Arai T, Ide T, Kaneko S, Ohta R, Hirose T. Force control system for autonomous micro-manipulation. In: Proceeding of the 2001 IEEE International Conference on Robotics and Automation. Seoul, Korea: IEEE, 2001. 610-615
    [82] Yang G, Nelson B J. Micromanipulation contact transition control by selective focusing and microforce control. In: Proceeding of the 2003 IEEE International Conference on Robotics and Automation. Taipei, China: IEEE, 2003. 3200-3206
    [83] Eisinberg A, Menciassi A, Micera S, Campolo D, Carrozza M C, Dario P. PI force control of a microgripper for assembling biomedical microdevices. IEE Proceedings-Circuits, Devices and Systems, 2001, 148(6): 348-352
    [84] Kim K, Liu X, Zhang Y, Sun Y. Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. Journal of Micromechanics and Microengineering, 2008, 18(5): 055013
    [85] Xu Q S. Precision position/force interaction control of a piezoelectric multimorph microgripper for microassembly. IEEE Transactions on Automation Science and Engineering, 2013, 10(3): 503-514
    [86] Rabenorosoa K, Clevy C, Chen Q, Lutz P. Study of forces during microassembly tasks using two-sensing-fingers grippers. IEEE/RSJ Transactions on Mechatronics, 2012, 17(5): 811-821
    [87] Komati B, Rabenorosoa K, Clevy C, Lutz P. Automated guiding task of a flexible micropart using a two-sensing-finger microgripper. IEEE Transactions on Automation Science and Engineering, 2013, 10(3): 515-524
    [88] Lu Z, Chen P C Y, Ganapathy A, Zhao G Y, Nam J, Yang G L, Burdet E, Teo C, Meng Q, Lin W. A force-feedback control system for micro-assembly. Journal of Micromechanics and Microengineering, 2006, 16(9): 1861-1868
    [89] Shen Y T, Xi N, Li W J. Force-guided assembly of micro mirrors. In: Proceeding of the 2003 IEEE International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003. 2149-2154
    [90] Gorman J J, Dagalakis N G. Probe-based micro-scale manipulation and assembly using force feedback. In: Proceeding of the 2006 IEEE International Conference on Robotics and Remote Systems for Hazardous Environments. Salt Lake City, UT, USA: CiteSeer, 2006. 621-628
    [91] Bilen H, Unel M. Micromanipulation using a microassembly workstation with vision and force sensing. Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2008, 5226: 1164-1172
    [92] Kim B, Kang H, Kim D, Park J. A flexible microassembly system based on hybrid manipulation scheme for manufacturing photonics components. International Journal of Advanced Manufacturing Technology, 2006, 28(3-4): 379-386
    [93] Yamamoto Y, Yoneyama T, Hashimoto T, Okubo T. Sensor-based analysis of high-precision insertion tasks. In: Proceeding of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland: IEEE, 2002. 1892-1897
    [94] Tian Xiao-Jun, Wang Yue-Chao, Liu Lian-Qing, Jiao Nian-Dong, Dong Zai-Li, Xi Ning. AFM based nanomanipulation system with 3D force feedback. Chinese Journal of Scientific Instrument, 2006, 27(7): 661-665(田孝军, 王越超, 刘连庆, 焦念东, 董再励, 席宁. 具有三维力反馈的原子力显微镜纳米操作系统. 仪器仪表学报, 2006, 27(7): 661-665)
    [95] Song Sha, Wang Xiao-Dong, Luo Yi. Precise control of pre-tightening force for miniature screw thread joints. China Mechanical Engineering, 2010, 21(13): 1523-1527(宋莎, 王晓东, 罗怡. 微小型零件螺纹连接中预紧力的精确控制. 中国机械工程, 2010, 21(13): 1523-1527)
    [96] Chen Li-Guo, Sun Li-Ning, Rong Wei-Bin. Micromanipulation robot based on hybrid control of micro-vision and micro-force flexible control. High Technology Letters, 2003, 13(12): 53-56(陈立国, 孙立宁, 荣伟彬. 基于显微视觉与微力觉柔顺混合控制的微操作机器人. 高技术通讯, 2003, 13(12): 53-56)
    [97] Wang D H, Yang Q, Dong H M. A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 138-147
    [98] Zhang J, Xu D, Zhang Z T, Zhang W S. Position/force hybrid control system for high precision aligning of small gripper to ring object. International Journal of Automation and Computing, 2013, 10(4): 360-367
    [99] Yu D H, Wu W R, Lu X m, Huang L M, Luo M, Wang H L. Precision robotic system for hohlraum assembly of the fusion ignition targets. In: Proceeding of the 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies. Xiamen, China: SPIE, 2012. 191-196
    [100] Ma Ping, Yang Jin-Fang, Cui Chang-Chun, Hu Sheng-Kun. Current situation and development of decoupling control. Control Engineering of China, 2005, 12(2): 97-100 (马平, 杨金芳, 崔长春, 胡胜坤. 解耦控制的现状及发展. 控制工程, 2005, 12(2): 97-100)
    [101] Yin Yue-Hong, Zhu Jian-Ying. Force sensing & control for intelligent machine: an overview. Acta Aeronautica et Astronautica Sinica, 1999, 20(1): 1-7(殷跃红, 朱剑英. 智能机器力觉及力控制研究综述. 航空学报, 1999, 20(1): 1-7)
    [102] Xin Bin, Chen Jie, Peng Zhi-Hong. Intelligent optimized control: overview and prospect. Acta Automatica Sinica, 2013, 39(11): 1831-1848(辛斌, 陈杰, 彭志红. 智能优化控制: 概述与展望. 自动化学报, 2013, 39(11): 1831-1848)
    [103] Xi Wen-Ming, Yao Bin. Microassembly and Micromanipulation. Beijing: National Defence Industry Press, 2005(席文明, 姚斌. 微装配与微操作技术. 北京: 国防工业出版社, 2005)
  • 加载中
计量
  • 文章访问数:  2259
  • HTML全文浏览量:  87
  • PDF下载量:  1389
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-16
  • 修回日期:  2013-11-12
  • 刊出日期:  2014-05-20

目录

    /

    返回文章
    返回