2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

端口受控哈密顿多智能体系统的输出一致性协议设计

李长生 王玉振

李长生, 王玉振. 端口受控哈密顿多智能体系统的输出一致性协议设计. 自动化学报, 2014, 40(3): 415-422. doi: 10.3724/SP.J.1004.2014.00415
引用本文: 李长生, 王玉振. 端口受控哈密顿多智能体系统的输出一致性协议设计. 自动化学报, 2014, 40(3): 415-422. doi: 10.3724/SP.J.1004.2014.00415
LI Chang-Sheng, WANG Yu-Zhen. Protocol Design for Output Consensus of Port-controlled Hamiltonian Multi-agent Systems. ACTA AUTOMATICA SINICA, 2014, 40(3): 415-422. doi: 10.3724/SP.J.1004.2014.00415
Citation: LI Chang-Sheng, WANG Yu-Zhen. Protocol Design for Output Consensus of Port-controlled Hamiltonian Multi-agent Systems. ACTA AUTOMATICA SINICA, 2014, 40(3): 415-422. doi: 10.3724/SP.J.1004.2014.00415

端口受控哈密顿多智能体系统的输出一致性协议设计

doi: 10.3724/SP.J.1004.2014.00415
基金项目: 

Supported by National Nature Science Foundation of China (61074068, 60774009, 61034007), and the Research Fund for the Doctoral Program of Chinese Higher Education (200804220028)

详细信息
    通讯作者:

    李长生

Protocol Design for Output Consensus of Port-controlled Hamiltonian Multi-agent Systems

Funds: 

Supported by National Nature Science Foundation of China (61074068, 60774009, 61034007), and the Research Fund for the Doctoral Program of Chinese Higher Education (200804220028)

  • 摘要: 研究了端口受控哈密顿(PCH)多智能体系统分别在固定和切换拓扑下的输出一致性问题. 首先根据哈密顿系统特有的优势,运用能量整形思路设计了一个全局稳定的群组输出一致性协议,该协议通过构造虚拟邻居的方式将有向图转化成无向图. 其次通过利用推广的LaSalle's不变原理将切换拓扑的问题转化成切换系统来研究. 例子证明,本文很好的解决端口受控哈密顿(PCH)多智能体系统的输出一致性问题.
  • [1] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
    [2] [2] Arcak M. Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control, 2007, 52(8): 1380-1390
    [3] [3] Ihle I A F, Arcak M, Fossen T I. Passivity-based designs for synchronized path-following. Automatica, 2007, 43(9): 1508-1518
    [4] [4] Hong Y G, Gao L X, Cheng D Z, Hu J P. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Transactions on Automatic Control, 2007, 52(5): 943-949
    [5] [5] Yan Wei-Sheng, Li Jun-Bing, Wang Yin-Tao. Consensus for damaged multi-agent system. Acta Automatica Sinica, 2012, 38(11): 1880-1884 (in Chinese)
    [6] [6] Luo Xiao-Yuan, Shao Shi-Kai, Guan Xin-Ping, Zhao Yuan-Jie. Dynamic generation and control of optimally persistent formation for multi-agent systems. Acta Automatica Sinica, 2013, 39(9): 1431-1438 (in Chinese)
    [7] [7] Min Hai-Bo, Liu Yuan, Wang Shi-Cheng, Sun Fu-Chun. An overview on coordination control problem of multi-agent system. Acta Automatica Sinica, 2012, 38(10): 1557-1570 (in Chinese)
    [8] [8] Yu J Y, Wang L. Group consensus in multi-agent systems with switching topologies and communication delays. Systems and Control Letters, 2010, 59(6): 340-348
    [9] [9] Qu Z H, Chunyu J M, Wang J. Nonlinear cooperative control for consensus of nonlinear and heterogeneous systems. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, LA: IEEE, 2007: 2301-2308
    [10] Chopra N, Spong M W. Passivity-based control of multi-agent systems. Advances in Robot Control: from Everyday Physics to Human-Like Movements. Berlin: Springer-Verlag, 2006. 107-134
    [11] Chopra N, Spong W M. Output synchronization of nonlinear systems with relative degree one. Recent Advances in Learning and Control, 2008, 371: 51-64
    [12] Chopra N, Spong M W. Output synchronization on strongly connected graphs. In: Proceedings of the 18th International Symposium on Mathematical Theory of Networks and Systems. Virginia, USA, 2008(未链接到本条文献信息)
    [13] Igarashi Y, Hatanaka T, Fujita M, Spong M W. Passivity-based output synchronization in SE(3). In: Proceedings of the IEEE American Control Conference. Seattle, WA: IEEE, 2008. 723-728
    [14] van der Schaft A J, Maschke B M. The Hamiltonian formulation of energy conserving physical systems with external ports. Archive fr Elektronik und bertragungstechnik, 1995, 49: 362-371
    [15] Ortega R, van der Schaft A, Castanos F, Astolfi A. Control by interconnection and standard passivity-based control of port-Hamiltonian systems. IEEE Transactions on Automatic Control, 2008, 54(11): 2527-2542
    [16] van der Schaft A J. Port-Hamiltonian systems: an introductory survey. In: Proceeding of the International Congress of Mathematicians. Madrid, Spain: IEEE, 2006. 1339-1366
    [17] Ortega R, van der Schaft A J, Maschke B, Escobar G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 2002, 38(4): 585-596
    [18] Wang Y Z. Generalized Controlled Hamiltonian Systems: Realization, Control and Applications. Beijing: Science Press, 2007 (in Chinese) (请核对本条文献信息)
    [19] Wang Y Z, Feng G, Cheng D Z, Liu Y Z. Adaptive L2-disturbance attenuation control of multimatchine power systems with SMES units. Automatica, 2006, 42(7): 1121-1132
    [20] Wang Y Z, Feng G, Cheng D Z. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica, 2007, 43(3): 403-415
    [21] Xi Z R, Cheng D Z, Lu Q, Mei S W. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica, 2002, 38(3): 527-534
    [22] Cheng L, Hou Z G, Tan M. Decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Singapore: IEEE, 2008. 2712-2717
    [23] Wang Y Z, Ge S S. Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems. IEEE Transactions on Automatic Control, 2008, 16(2): 202-213
    [24] Godsil C, Royle G F. Algebraic Graph Theory, ser. Graduate Tests in Mathematics. Berlin: Springer-Verlag, 2001
    [25] Bacciotti A, Mazzi L. An invariance principle for nonlinear switched systems. Systems and Control Letters, 2005, 54(11): 1109-1119
    [26] Hespanha J P. Uniform stability of switched linear systems: extensions of LaSalle's invariance principle. IEEE Transactions on Automatic Control, 2004, 49(4): 470-482
    [27] Ortega R, van der Schaft A J, Mareels I, Maschke B. Energy shaping control revisited. Advances in the Control of Nonlinear Systems. London: Springer-Verlag, 2001, 264: 227-307
    [28] Wang J H, Chen D Z. Stability of switched nonlinear systems via extensions of LaSalle's invariance principle. Science in China Series F-Information Sciences, 2009, 52(1): 84-90
    [29] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 998-1001
  • 加载中
计量
  • 文章访问数:  1599
  • HTML全文浏览量:  128
  • PDF下载量:  1283
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-31
  • 修回日期:  2013-10-08
  • 刊出日期:  2014-03-20

目录

    /

    返回文章
    返回