2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种鲁棒的基于光度立体视觉的表面重建方法

吴仑 王涌天 刘越

吴仑, 王涌天, 刘越. 一种鲁棒的基于光度立体视觉的表面重建方法. 自动化学报, 2013, 39(8): 1339-1348. doi: 10.3724/SP.J.1004.2013.01339
引用本文: 吴仑, 王涌天, 刘越. 一种鲁棒的基于光度立体视觉的表面重建方法. 自动化学报, 2013, 39(8): 1339-1348. doi: 10.3724/SP.J.1004.2013.01339
WU Lun, WANG Yong-Tian, LIU Yue. A Robust Approach Based on Photometric Stereo for Surface Reconstruction. ACTA AUTOMATICA SINICA, 2013, 39(8): 1339-1348. doi: 10.3724/SP.J.1004.2013.01339
Citation: WU Lun, WANG Yong-Tian, LIU Yue. A Robust Approach Based on Photometric Stereo for Surface Reconstruction. ACTA AUTOMATICA SINICA, 2013, 39(8): 1339-1348. doi: 10.3724/SP.J.1004.2013.01339

一种鲁棒的基于光度立体视觉的表面重建方法

doi: 10.3724/SP.J.1004.2013.01339
基金项目: 

国家重点基础研究发展计划(973计划) (2010CB732505);国家自然科学基金(61072096)资助

详细信息
    作者简介:

    吴仑 北京理工大学光电学院博士研究生. 2006 年获北京理工大学光学工程专业硕士学位. 主要研究方向为运动结构重建与数学优化方法.E-mail: lun.wu@hotmail.com

A Robust Approach Based on Photometric Stereo for Surface Reconstruction

Funds: 

Supported by National Basic Research Program of China (973 program) (2010CB732505) and National Natural Science Foundation of China (61072096)

  • 摘要: 提出一种基于先进的凸优化技术的光度立体视觉重建框架. 首先通过鲁棒的主成分分析(Robust principle component analysis, RPCA)祛除图像噪声, 得到低秩矩阵和物体表面向量场, 然后再通过表面重建算法从向量场来恢复物体形状. 相对于先前的一些使用最小二乘或者一些启发式鲁棒技术的方法, 该方法使用了所有可用的信息, 可以同时修复数据中的丢失和噪声数据, 显示出了较高的计算效率以及对于大的稀疏噪声的鲁棒性. 实验结果表明, 本文提出的框架大大提高了在噪声存在情况下物体表面的重建精度.
  • [1] Woodham R J. Photometric method for determining surface orientation from multiple images. Optical Engineering, 1980, 19(1): 139-144
    [2] Shashua A. Geometry and Photometry in 3D Visual Recognition[Ph.D. dissertation], Massachusetts Institute of Technology Cambridge, USA, 1992
    [3] Belhumeur P N, Kriegman D J. What is the set of images of an object under all possible lighting conditions? In: Proceedings of the 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 1996. 270-227
    [4] Basri R, Jacobs D W. Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 218-233
    [5] Georghiades A S, Kriegman D J, Belhumeur P N. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660
    [6] Hayakawa H. Photometric stereo under a light source with arbitrary motion. Journal of the Optical Society of America, 1994, 11(11): 3079-3089
    [7] Jolliffe I T. Principal Component Analysis. New York: Springer-Verlag, 1986
    [8] Belhumeur P N, Kriegman D J, Yuille A L. The bas-relief ambiguity. In: Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico: IEEE, 1997. 1060-1066
    [9] Shi B X, Matsushita Y, Wei Y C, Xu C, Tan P. Self-calibrating photometric stereo. In: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 1118-1125
    [10] Jacobs D. Linear fitting with missing data: applications to structure-from-motion and to characterizing intensity images. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico: IEEE, 1997. 206-212
    [11] Yuille A L, Snow D, Epstein R, Belhumeur P N. Determining generative models of objects under varying illumination: shape and albedo from multiple images using SVD and integrability. International Journal of Computer Vision, 1999, 35(3): 203-222
    [12] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381-395
    [13] Juliá C, Lumbreras F, Sappa A D. A factorization-based approach to photometric stereo. International Journal of Imaging Systems and Technology, 2011, 21(1): 115-119
    [14] Guerreiro R F C, Aguiar P M Q. Estimation of rank deficient matrices from partial observations: two-step iterative algorithms. EMMCVPR. Lisbon, Portugal: Springer, 2003. 450-466
    [15] Chen P. Optimization algorithms on subspaces: revisiting missing data problem in low-rank matrix. International Journal of Computer Vision, 2008, 80(1): 125-142
    [16] Mukaigawa Y, Ishii Y, Shakunaga T. Analysis of photometric factors based on photometric linearization. Journal of the Optical Society of America, 2007, 24(10): 3326-3334
    [17] Miyazaki D, Hara K, Ikeuchi K. Median photometric stereo as applied to the segonko tumulus and museum objects. International Journal of Computer Vision, 2010, 86(2-3): 229-242
    [18] Candés E, Li X D, Ma Y, Wright J. Robust principal component analysis? Journal of the ACM, 2011, 58(3): 1-37
    [19] Wu L, Ganesh A, Shi B X, Matsushita Y, Wang Y T, Ma Y. Robust photometric stereo via low-rank matrix completion and recovery. In: Proceedings of the 10th Asian Conference on Computer Vision. Queenstown New Zealand: Springer, 2010. 703-717
    [20] Simchony T, Chellappa R, Shao M. Direct analytical methods for solving Possion equations in computer vision problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5): 435-446
    [21] Chandrasekaran V, Sanghavi S, Parrilo P A, Willsky A S. Sparse and low-rank matrix decompositions. In: Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing. Monticello, IL: IEEE, 2009. 962-967
    [22] Lin Z C, Chen M M, Wu L Q, Ma Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-rank Matrices. Technical Report UILU-ENG-09-2215, UIUC, USA, 2009
    [23] Recht B, Fazel M, Parillo P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 2010, 52(3): 471-501
    [24] Candés E, Recht B. Exact matrix completion via convex optimization. Foundation of Computational Mathematics, 2008, 9(6): 717-772
    [25] Candés E, Tao T. The power of convex relaxation: near-optimal matrix completion. IEEE Transactions on Information Theory, 2010, 56(5): 2053-2080
    [26] Ganesh A, Lin Z C, Wright J, Wu L Q, Chen M M, Ma Y. Fast algorithms for recovering a corrupted low-rank matrix. In: Proceedings of the 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. Aruba, Dutch Antilles: IEEE, 2009. 213-216
    [27] Toh K C, Yun S. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pacific Journal of Optimization, 2010, 6: 615-640
    [28] Bertsekas D P. Nonlinear Programming. Belmont, MA: Athena Scientific, 2004
    [29] Cook R L, Torrance K E. A reflectance model for computer graphics. ACM SIGGRAPH Computer Graphics, 1981, 15(3): 307-316
    [30] Zhou Z H, Li X D, Wright J, Candés E, Ma Y. Stable principal component pursuit. In: Proceedings of the 2010 IEEE International Symposium on Information Theory. Austin, USA: IEEE, 2010. 1518-1522
  • 加载中
计量
  • 文章访问数:  2030
  • HTML全文浏览量:  72
  • PDF下载量:  1363
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-12
  • 修回日期:  2012-07-15
  • 刊出日期:  2013-08-20

目录

    /

    返回文章
    返回