2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有修正的Lelie-Gower项Holling-III类时滞捕食系统的Hopf分支

张子振 杨慧中

张子振, 杨慧中. 具有修正的Lelie-Gower项Holling-III类时滞捕食系统的Hopf分支. 自动化学报, 2013, 39(5): 610-616. doi: 10.3724/SP.J.1004.2013.00610
引用本文: 张子振, 杨慧中. 具有修正的Lelie-Gower项Holling-III类时滞捕食系统的Hopf分支. 自动化学报, 2013, 39(5): 610-616. doi: 10.3724/SP.J.1004.2013.00610
ZHANG Zi-Zhen, YANG Hui-Zhong. Hopf Bifurcation in a Delayed Predator-prey System with Modified Leslie-Gower and Holling-type III Schemes. ACTA AUTOMATICA SINICA, 2013, 39(5): 610-616. doi: 10.3724/SP.J.1004.2013.00610
Citation: ZHANG Zi-Zhen, YANG Hui-Zhong. Hopf Bifurcation in a Delayed Predator-prey System with Modified Leslie-Gower and Holling-type III Schemes. ACTA AUTOMATICA SINICA, 2013, 39(5): 610-616. doi: 10.3724/SP.J.1004.2013.00610

具有修正的Lelie-Gower项Holling-III类时滞捕食系统的Hopf分支

doi: 10.3724/SP.J.1004.2013.00610
详细信息
    通讯作者:

    杨慧中

Hopf Bifurcation in a Delayed Predator-prey System with Modified Leslie-Gower and Holling-type III Schemes

  • 摘要: 研究了一类具有修正的Leslie-Gower项与Holling-III类功能性反应函数的时滞捕食系统. 以时滞为分支参数, 讨论系统正平衡点的局部稳定性, 给出系统产生Hopf分支的时滞关键值. 进一步, 确定系统Hopf分支的方向与分支周期解稳定性, 并对系统全局分支周期解的存在性进行讨论. 最后, 利用仿真实例验证理论分析结果的正确性.
  • [1] Zhang S W, Dong L Z, Chen L S. The study of predator-prey system with defensive ability of prey and impulsive perturbations on the predator. Chaos, Solitons and Fractals, 2005, 23(2): 631-643[2] Ma Y F. Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays. Nonlinear Analysis: Real World Applications, 2012, 13(1): 370-375[3] Song Y L, Yuan S L, Zhang J M. Bifurcation analysis in the delayed Leslie-Gower predator-prey system. Applied Mathematical Modelling, 2009, 33(11): 4049-4061[4] Yuan S L, Song Y L. Stability and Hopf bifurcations in a delayed Leslie-Gower predator-prey system. Journal of Mathematical Analysis and Applications, 2009, 355(1): 82-100[5] Zhang L, Lin Z G. A Hlling's type II prey-predator model with stage structure and nonlocal delay. Applied Mathematics and Computation, 2011, 217(10): 5000-5010[6] Jiang G R, Lu Q S, Qian L N. Complex dynamics of a Holling type II prey-predator system with state feedback control. Chaos, Solitons and Fractals, 2007, 31(2): 448-461[7] He D C, Huang W T, Xu Q J. The dynamic complexity of an impulsive Holling II predator-prey model with mutual interference. Applied Mathematical Modelling, 2010, 34(9): 2654-2664[8] Nie L F, Teng Z D, Hu L, Peng J G. Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state dependent impulsive effects. Nonlinear Analysis: Real World Applications, 2010, 11(3): 1364-1373[9] Lv J L, Wang K. Asymptotic properties of a stochastic predator-prey system with Holling II functional response. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(10): 4037-4048[10] Guo H J, Song X Y. An impulsive predator-prey system with modified Leslie-Gower and Holling type II schemes. Chaos, Solitons and Fractals, 2008, 36(5): 1320-1331[11] Cai Z W, Huang L H, Chen H B. Positive periodic solution for a multispecies competition-predator system with Holling III functional response and time delays. Applied Mathematics and Computation, 2011, 217(10): 4866-4878[12] Etoua R M, Rousseau C. Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type III. Journal of Differential Equations, 2010, 249(9): 2316-2356[13] Lian F Y, Xu Y T. Hopf bifurcation analysis of a predator-prey system with Holling type IV functional response and time delay. Applied Mathematics and Computation, 2009, 215(4): 1484-1495[14] Baek H. A food chain system with Holling type IV functional response and impulsive perturbations. Computers and Mathematics with Applications, 2010, 60(5): 1152-1163[15] Huang M H, Li X P. Dispersal permanence of a periodic predator-prey system with Holling type-IV functional response. Applied Mathematics and Computation, 2011, 218(2): 502-513[16] Holling C S. The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada, 1965, 97(45): 1-60[17] Leslie P H. Some further notes on the use of matrices in population mathematics. Biometrika, 1948, 35(3-4): 213-245[18] Leslie P H. A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika, 1958, 45(1-2): 16-31[19] González-Olivares E, Mena-Lorca J, Rojas-Palma A, Flores J D. Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey. Applied Mathematical Modelling, 2011, 35(1): 366-381[20] Gao Z W, Breikin T, Wang H. Reliable observer-based control against sensor failures for systems with time delays in both state and input. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2008, 38(5): 1018-1029[21] Gao Z W, Ding S X. State and disturbance estimator for time-delay systems with application to fault estimation and signal compensation. IEEE Transactions on Signal Processing, 2007, 55(12): 5541-5551[22] Kar T K, Ghorai A. Dynamic behaviour of a delayed predator-prey model with harvesting. Applied Mathematics and Computation, 2011, 217(22): 9085-9104[23] Nindjin A F, Aziz-Alaoui M A, Cadivel M. Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay. Nonlinear Analysis: Real World Applications, 2006, 7(5): 1104-1118[24] Yafia R, El Adnani F, Alaoui H T. Limit cycle and numerical similations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Nonlinear Analysis: Real World Applications, 2008, 9(5): 2055-2067[25] Tian Y L, Weng P X. Stability analysis of diffusive predator-prey model with modified Leslie-Gower and Holling-type III schemes. Applied Mathematics and Computation, 2011, 218(7): 3733-3745[26] Yang Y. Hopf bifurcation in a two-competitor, one-prey system with time delay. Applied Mathematics and Computation, 2009, 214(1): 228-235[27] Ruan S G, Wei J J. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dynamics of Continuous, Discrete and Impulsive Systems, 2003, 10(6): 863-874[28] Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation. Cambridge: Cambridge University Press, 1981[29] Wu J H. Symmetric functional differential equations and neural networks with memory. Transactions of the American Mathematical Society, 1998, 350(12): 4799-4838
  • 加载中
计量
  • 文章访问数:  1557
  • HTML全文浏览量:  46
  • PDF下载量:  2169
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-16
  • 修回日期:  2013-03-19
  • 刊出日期:  2013-05-20

目录

    /

    返回文章
    返回