2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时变过程在线辨识的即时递推核学习方法研究

刘毅 金福江 高增梁

刘毅, 金福江, 高增梁. 时变过程在线辨识的即时递推核学习方法研究. 自动化学报, 2013, 39(5): 602-609. doi: 10.3724/SP.J.1004.2013.00602
引用本文: 刘毅, 金福江, 高增梁. 时变过程在线辨识的即时递推核学习方法研究. 自动化学报, 2013, 39(5): 602-609. doi: 10.3724/SP.J.1004.2013.00602
LIU Yi, JIN Fu-Jiang, GAO Zeng-Liang. Online Identification of Time-varying Processes Using Just-in-time Recursive Kernel Learning Approach. ACTA AUTOMATICA SINICA, 2013, 39(5): 602-609. doi: 10.3724/SP.J.1004.2013.00602
Citation: LIU Yi, JIN Fu-Jiang, GAO Zeng-Liang. Online Identification of Time-varying Processes Using Just-in-time Recursive Kernel Learning Approach. ACTA AUTOMATICA SINICA, 2013, 39(5): 602-609. doi: 10.3724/SP.J.1004.2013.00602

时变过程在线辨识的即时递推核学习方法研究

doi: 10.3724/SP.J.1004.2013.00602
详细信息
    通讯作者:

    刘毅

Online Identification of Time-varying Processes Using Just-in-time Recursive Kernel Learning Approach

  • 摘要: 为了及时跟踪非线性化工过程的时变特性, 提出即时递推核学习 (Kernel learning, KL)的在线辨识方法. 针对待预测的新样本点, 采用即时学习 (Just-in-time kernel learning, JITL)策略, 通过构造累积相似度因子, 选择与其相似的样本集建立核学习辨识模型. 为避免传统即时学习对每个待预测点都重新建模的繁琐, 利用两个临近时刻相似样本集的异同点, 采用递推方法有效添加新样本, 并删减旧模型的样本, 以快速建立新即时模型. 通过一时变连续搅拌釜式反应过程的在线辨识, 表明了所提出方法在保证计算效率的同时, 较传统递推核学习方法提高了辨识的准确程度, 能更好地辨识时变过程.
  • [1] Ljung L, Hjalmarsson H, Ohlsson H. Four encounters with system identification. European Journal of Control, 2011, 17(5): 449-471[2] Himmelblau D M. Accounts of experiences in the application of artificial neural networks in chemical engineering. Industrial and Engineering Chemistry Research, 2008, 47(16): 5782-5796[3] Wang L X. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. New Jersey: Prentice-Hall, 1994.[4] Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2002.[5] Suykens J A K, van Gestel T, de Brabanter J, De Moor B, Vandewalle J. Least Squares Support Vector Machines. Singapore: World Scientific, 2002.[6] Rojo-Alvarez J L, Martinez-Ramon M, de Prado-Cumplido M, Artes-Rodriguez A, Figueiras-Vidal A R. Support vector method for robust ARMA system identification. IEEE Transactions on Signal Processing, 2004, 52(1): 155-164[7] Toivonen H T, Totterman S, Akesson B. Identification of state-dependent parameter models with support vector regression. International Journal of Control, 2007, 80(9): 1454-1470[8] Totterman S, Toivonen H T. Support vector method for identification of Wiener models. Journal of Process Control, 2009, 19(7): 1174-1181[9] Li C H, Zhu X J, Cao G Y, Sui S, Hu M R. Identification of the Hammerstein model of a PEMFC stack based on least squares support vector machines. Journal of Power Sources, 2008, 175(1): 303-316[10] Wang H, Pi D Y, Sun Y X. Online SVM regression algorithm-based adaptive inverse control. Neurocomputing, 2007, 70(3): 952-959[11] Tang H S, Xue S T, Chen R, Sato T. Online weighted LS-SVM for hysteretic structural system identification. Engineering Structures, 2006, 28(12): 1728-1735[12] Liu Y, Wang H Q, Yu J, Li P. Selective recursive kernel learning for online identification of nonlinear systems with NARX form. Journal of Process Control, 2010, 20(2): 181-194[13] Cheng C, Chiu M S. A new data-based methodology for nonlinear process modeling. Chemical Engineering Science, 2004, 59(13): 2801-2810[14] Pan T H, Li S Y, Cai W J. Lazy learning-based online identification and adaptive PID control: a case study for CSTR process. Industrial and Engineering Chemistry Research, 2007, 46(2): 472-480[15] Liu Yi. Research on Kernel Learning Adaptive Modeling and Control for Industrial Batch Processes [Ph.D. dissertation], Zhejiang University, China, 2009(刘毅. 间歇过程的核学习自适应建模与控制研究及工业应用 [博士学位论文]. 浙江大学, 中国, 2009)[16] Fujiwara K, Kano M, Hasebe S, Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE Journal, 2009, 55(7): 1754-1765[17] Liu Y Q, Huang D P, Li Y. Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor. Industrial and Engineering Chemistry Research, 2012, 51(8): 3356-3367[18] Ge Z Q, Song Z H. A comparative study of just-in-time-learning based methods for online soft sensor modeling. Chemometrics and Intelligent Laboratory Systems, 2010, 104(2): 306-317[19] Golub G H, van Loan C F. Matrix Computations. Baltimore: The John Hopkins University Press, 1996.[20] Nikravesh M, Farell A E, Stanford T G. Control of nonisothermal CSTR with time varying parameters via dynamic neural network control (DNNC). Chemical Engineering Journal, 2000, 76(1): 1-16[21] Gao Z W, Dai X W, Breikin T, Wang H. Novel parameter identification by using a high-gain observer with application to a gas turbine engine. IEEE Transactions on Industrial Informatics, 2008, 4(4): 271-279
  • 加载中
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  51
  • PDF下载量:  1668
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-15
  • 修回日期:  2012-12-19
  • 刊出日期:  2013-05-20

目录

    /

    返回文章
    返回