2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于压缩感知的二维几何信号压缩方法

杜卓明 耿国华 贺毅岳

杜卓明, 耿国华, 贺毅岳. 一种基于压缩感知的二维几何信号压缩方法. 自动化学报, 2012, 38(11): 1841-1846. doi: 10.3724/SP.J.1004.2012.01841
引用本文: 杜卓明, 耿国华, 贺毅岳. 一种基于压缩感知的二维几何信号压缩方法. 自动化学报, 2012, 38(11): 1841-1846. doi: 10.3724/SP.J.1004.2012.01841
DU Zhuo-Ming, GENG Guo-Hua, HE Yi-Yue. A 2-D Geometric Signal Compression Method Based on Compressed Sensing. ACTA AUTOMATICA SINICA, 2012, 38(11): 1841-1846. doi: 10.3724/SP.J.1004.2012.01841
Citation: DU Zhuo-Ming, GENG Guo-Hua, HE Yi-Yue. A 2-D Geometric Signal Compression Method Based on Compressed Sensing. ACTA AUTOMATICA SINICA, 2012, 38(11): 1841-1846. doi: 10.3724/SP.J.1004.2012.01841

一种基于压缩感知的二维几何信号压缩方法

doi: 10.3724/SP.J.1004.2012.01841
详细信息
    通讯作者:

    杜卓明

A 2-D Geometric Signal Compression Method Based on Compressed Sensing

  • 摘要: 本文给出的压缩方法属于谱压缩方法. 谱压缩方法是一种常用的二维轮廓线模型压缩方法. 文章从压缩感知的角度解释了谱压缩方法, 并提出了基于压缩感知的二维轮廓线模型压缩方法. 首先利用二维轮廓线模型 Laplace 算子的特征向量构造了一组基. 二维轮廓线模型的几何结构在这组基下可以被稀疏表达. 利用随机矩阵对二维轮廓线模型的几何结构抽样, 完成压缩. 恢复过程中, 通过最优化1-范数, 实现几何信号的恢复. 实验结果表明, 该方法压缩速度快, 比例高, 恢复效果好, 适合对大型数据以及远距离数据进行压缩.
  • [1] Bhat P, Zitnick C L, Cohen M, Curless B. GradientShop: a gradient-domain optimization framework for image and video filtering. ACM Transactions on Graphics, 2010, 29(2):1-14[2] Zhou K, Gong M M, Huang X, Guo B N. Data-parallel oc-trees for surface reconstruction. IEEE Transactions on Vi-sualization and Computer Graphics, 2010, 17(5): 669-681[3] Marchesin S, Chen C K, Ho C, Ma K L. View-dependent streamlines for 3D vector fields. IEEE Transactions on Visu-alization and Computer Graphics, 2010, 16(6): 1578-1586[4] Zhou Kun. Digital Geometry Processing: Theory and Ap-plications [Ph. D. dissertation], Zhejiang University, China, 2002 (周昆. 数字几何处理: 理论与应用[博士学位论文], 浙江大学, 中 国, 2002)[5] Weinkauf T, Theisel H. Streak lines as tangent curves of a derived vector field. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1225-1234[6] Farbman Z, Hoffer G, Lipman Y, Cohen-Or D, Lischinski D. Coordinates for instant image cloning. ACM Transactions on Graphics, 2009, 28(3): 1-9[7] Karni Z, Gotsman C. Spectral compression of mesh geome-try. In: Proceedings of the 27th annual conference on Com-puter graphics and interactive techniques. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co, 2009. 279-286[8] Khodakovsky A, Schreder P, Sweldens W. Progressive ge-ometry compression. In: Proceedings of the 27th annual con-ference on Computer graphics and interactive techniques. New York, NY, USA: ACM Press/Addison-Wesley Publish-ing Co, 2000. 271-278[9] Gu X F, Gortler S J, Hoppe H. Geometry images. ACM Transactions on Graphics, 2002, 32(3): 355-361[10] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306[11] Candues E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425[12] Mohimani H, Babie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed 0-norm. IEEE Transactions on Signal Processing, 2009, 57(1):289-301[13] Candμes E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5-6): 877-905[14] Rosanwo O, Petz C, Prohaska S, Hotz I, Hege H C. Dual streamline seeding. In: Proceedings of the 2009 IEEE Pa-cific Visualization Symposium. Beijing, China: IEEE, 2009.9-16[15] Candues E J, Romberg J, Tao T. Robust uncertainty prin-ciples: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509
  • 加载中
计量
  • 文章访问数:  1878
  • HTML全文浏览量:  65
  • PDF下载量:  1306
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-25
  • 修回日期:  2012-06-29
  • 刊出日期:  2012-11-20

目录

    /

    返回文章
    返回