|
[1]
|
Natarajan B K. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 1995, 24(2): 227-234[2] Chen S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61[3] Candes E, Wakin M, Boyd S. Enhancing sparsity by reweighted L_1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5): 877-905[4] Chartrand R. Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 2007, 14(10): 707-710[5] Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 2008, 24(3): 1-14[6] Donoho D L. Neighborly polytopes and the sparse solution of underdetermined linear equations [Online], available: http: // www-stat.stanford.edu/ ~ donoho/ Reports/ 2005/ NPaSSULE-01-28-05.pdf, November 8, 2011[7] Donoho D L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete and Computational Geometry, 2006, 35(4): 617-652[8] Donoho D L, Stodden V. Breakdown point of model selection when the number of variables exceeds the number of observations. In: Proceedings of the International Joint Conference on Neural Networks. Vancouver, USA: IEEE, 2006. 1916-1921[9] Xu Z B, Zhang H, Wang Y, Chang X Y, Yong L. L_1/2 regularization. Science in China Series F: Information Sciences, 2010, 53(6): 1159-1169[10] Chen X, Xu F M, Ye Y. Lower bound theory of nonzero entries in solutions of L_2-L_p minimization. SIAM Journal on Scientific Computing, 2010, 32(5): 2832-2852[11] Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA: IEEE, 2008. 3869-3872[12] Candes E, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215[13] Chartrand R. Nonconvex compressed sensing and error correction. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu, USA: IEEE, 2007. 889-892[14] Candes E, Caltech J R. L_1-MAGIC: recovery of sparse signals via convex programming [Online], available: http: //users.ece.gatech.edu/~ justin/l1magic/downloads/l1magic. pdf, June 30, 2011[15] Donoho D L, Tanner J. Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philosophical Transactions of the Royal Society A, 2009, 367(1906): 4273-4293
|