2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多智能体系统输入约束下的一致性与轨迹规划研究

闫敬 关新平 罗小元 杨晛

闫敬, 关新平, 罗小元, 杨晛. 多智能体系统输入约束下的一致性与轨迹规划研究. 自动化学报, 2012, 38(7): 1074-1082. doi: 10.3724/SP.J.1004.2012.01074
引用本文: 闫敬, 关新平, 罗小元, 杨晛. 多智能体系统输入约束下的一致性与轨迹规划研究. 自动化学报, 2012, 38(7): 1074-1082. doi: 10.3724/SP.J.1004.2012.01074
YAN Jing, GUAN Xin-Ping, LUO Xiao-Yuan, YANG Xian. Consensus and Trajectory Planning with Input Constraints for Multi-agent Systems. ACTA AUTOMATICA SINICA, 2012, 38(7): 1074-1082. doi: 10.3724/SP.J.1004.2012.01074
Citation: YAN Jing, GUAN Xin-Ping, LUO Xiao-Yuan, YANG Xian. Consensus and Trajectory Planning with Input Constraints for Multi-agent Systems. ACTA AUTOMATICA SINICA, 2012, 38(7): 1074-1082. doi: 10.3724/SP.J.1004.2012.01074

多智能体系统输入约束下的一致性与轨迹规划研究

doi: 10.3724/SP.J.1004.2012.01074

Consensus and Trajectory Planning with Input Constraints for Multi-agent Systems

  • 摘要: 针对多智能体系统提出了一种分布式预测控制方法. 首先, 研究了有输入约束下的一致性问题. 其次, 对环境中有障碍物的多智能体轨迹规划进行了研究, 其中只有当障碍物进入智能体有限感知区域内时, 障碍物状态信息才能被获取. 基于预测控制方法, 设计了一种分布式控制算法来解决上面两个问题. 构造一个与每个智能体动力学相交互的代价函数, 设计相应最优控制问题, 从而实现优化控制算法. 智能体间交互信息是其邻居在上一时刻的最优控制状态. 系统稳定性可以通过构造代价函数中的一个终点状态控制器与最优控制问题中的一个终点状态区域来保证. 仿真研究表明所提方法的有效性.
  • [1] Guzzella L. Automobiles of the future and the role of automatic control in those systems. Annual Reviews in Control, 2009, 33(1): 1-10[2] Jing Y, Guan X, Luo X, Tan F. Formation and obstacle avoidance control for multiagent systems. Journal of Control Theory and Applications, 2011, 9(2): 141-147[3] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3): 401-420[4] Kolling A, Carpin S. Pursuit-evasion on trees by robot teams. IEEE Transactions on Robotics, 2010, 26(1): 32-47[5] Xiao F, Wang L, Chen J, Gao Y P. Finite-time formation control for multi-agent systems. Automatica, 2009, 45(11): 2605-2611[6] Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476[7] Couzin I D, Krause J, Franks N R, Levin S A. Effective leadership and decision-making in animal groups on the move. Nature, 2005, 433(7025): 513-516[8] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 1986, 5(1): 90-98[9] Olfati-saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233[10] Lin Z Y, Broucke M, Francis B. Local control strategies for groups of mobile autonomous agents. IEEE Transactions on Automatic Control, 2004, 49(4): 622-629[11] Su H S, Wang X F, Lin Z L. Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 2009, 54(2): 293-307[12] Xiao F, Wang L. Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays. IEEE Transactions on Automatic Control, 2008, 53(8): 1804-1816[13] Ding W, Yan G F, Lin Z Y. Collective motions and formations under pursuit strategies on directed acyclic graphs. Automatica, 2010, 46(1): 174-181[14] Semsar-Kazerooni E, Khorasani K. Multi-agent team cooperation: a game theory approach. Automatica, 2009, 45(10): 2205-2213[15] Gu D B. A differential game approach to formation control. IEEE Transactions on Control System Technology, 2008, 16(1): 85-93[16] Stipanovic D, Inalhan G, Teo R, Tomlin C J. Decentralized overlapping control of a formation of unmanned aerial vehicles. Automatica, 2004, 40(8): 1285-1296[17] Marden J R, Arslan G, Shamma J S. Cooperative control and potential games. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(6): 1393-1407[18] Balch T, Arkin R C. Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 1999, 14(6): 926-939[19] Dunbar W B, Murray R M. Distributed receding horizon control for multi-vehicle formation stabilization. Automatica, 2006, 42(4): 549-558[20] Dunbar W B. Distributed Receding Horizon Control for Multiagent Systems [Ph.D. dissertation], California Institute of Technology, USA, 2004[21] Yang T T, Liu Z Y, Chen H, Pei R. Formation control and obstacle avoidance for multiple mobile robots. Acta Automatica Sinica, 2008, 34(5): 588-593[22] Godsil C, Royle G. Algebraic Graph Theory: Graduate Texts in Mathematics. New York: Springer, 2001[23] Keviczky T, Borrelli F, Fregene K, Godbole D, Balas G J. Decentralized receding horizon control and coordination of autonomous vehicle formations. IEEE Transactions on Control Systems Technology, 2008, 16(1): 19-33[24] Defoort M, Kokosy A, Floquet T, Perruquetti W, Palos J. Motion planning for cooperative unicycle-type mobile robots with limited sensing ranges: a distributed receding horizon approach. Robotics and Autonomous Systems, 2009, 57(11): 1094-1106[25] Shao Yu-Seng, Dai Xian-Zhong. Process Control Engineering. Beijing: China Machine Press, 2000 (in Chinese)[26] Gu D B, Hu H S. A stabilizing receding horizon regulator for nonholonomic mobile robots. IEEE Transactions on Robotics, 2005, 21(5): 1022-1028[27] Beard R W, Stepanyan V. Information consensus in distributed multiple vehicle coordinated control. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Hawaii, USA, IEEE, 2003. 2029-2034
  • 加载中
计量
  • 文章访问数:  2452
  • HTML全文浏览量:  92
  • PDF下载量:  1706
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-18
  • 修回日期:  2011-05-28
  • 刊出日期:  2012-07-20

目录

    /

    返回文章
    返回