2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速核密度估计定理和大规模图论松弛聚类方法

钱鹏江 王士同 邓赵红

钱鹏江, 王士同, 邓赵红. 快速核密度估计定理和大规模图论松弛聚类方法. 自动化学报, 2011, 37(12): 1422-1434. doi: 10.3724/SP.J.1004.2011.01422
引用本文: 钱鹏江, 王士同, 邓赵红. 快速核密度估计定理和大规模图论松弛聚类方法. 自动化学报, 2011, 37(12): 1422-1434. doi: 10.3724/SP.J.1004.2011.01422
QIAN Peng-Jiang, WANG Shi-Tong, DENG Zhao-Hong. Fast Kernel Density Estimate Theorem and Scaling up Graph-based Relaxed Clustering Method. ACTA AUTOMATICA SINICA, 2011, 37(12): 1422-1434. doi: 10.3724/SP.J.1004.2011.01422
Citation: QIAN Peng-Jiang, WANG Shi-Tong, DENG Zhao-Hong. Fast Kernel Density Estimate Theorem and Scaling up Graph-based Relaxed Clustering Method. ACTA AUTOMATICA SINICA, 2011, 37(12): 1422-1434. doi: 10.3724/SP.J.1004.2011.01422

快速核密度估计定理和大规模图论松弛聚类方法

doi: 10.3724/SP.J.1004.2011.01422
详细信息
    通讯作者:

    钱鹏江 江南大学数字媒体学院副教授, 博士. 主要研究方向为模式识别, 智能计算及应用. E-mail: qianpjiang@126.com

Fast Kernel Density Estimate Theorem and Scaling up Graph-based Relaxed Clustering Method

  • 摘要: 首先证明了快速核密度估计 (Fast kernel density estimate, FKDE) 定理: 基于抽样子集的高斯核密度估计(KDE)与原数据集的KDE间的误差与抽样容量和核参数相关, 而与总样本容量无关. 接着本文揭示了基于高斯核形式的图论松弛聚类(Graph-based relaxed clustering, GRC)算法的目标表达式可分解成“Parzen窗加权和 + 平方熵”的形式, 即此时GRC可视作一个核密度估计问题, 这样基于KDE近似策略, 本文提出了大规模图论松弛聚类方法(Scaling up GRC by KDE approximation, SUGRC-KDEA). 较之先前的工作, 这一方法的优势在于为GRC作用于大规模数据集提供了更简单和易于实现的方案.
  • [1] Lee C, Zaiane O, Park H, Huang J, Greiner R. Clustering high dimensional data: a graph-based relaxed optimization approach. Information Sciences, 2008, 178(23): 4501-4511[2] Qian Peng-Jiang, Wang Shi-Tong, Deng Zhao-Hong, Xu Hua. Fast spectral clustering for large data sets using minimal enclosing ball. Acta Electronica Sinica, 2010, 38(9): 2035-2041(钱鹏江, 王士同, 邓赵红, 徐华. 基于最小包含球的大数据集快速谱聚类算法. 电子学报, 2010, 38(9): 2035-2041)[3] Deng Z H, Chung F L, Wang S T. FRSDE: fast reduced set density estimator using minimal enclosing ball approximation. Pattern Recognition, 2008, 41(4): 1363-1372[4] Tsang I, Kwok J, Zurada J. Generalized core vector machines. IEEE Transactions on Neural Networks, 2006, 17(5): 1126-1140[5] Badoiu M, Clarkson K L. Optimal core-sets for balls. Computational Geometry: Theory and Applications, 2008, 40(1): 14-22[6] Badoiu M, Har-Peled S, Indyk P. Approximate clustering via core-sets. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing. Quebec, Canada: ACM, 2002. 250-257[7] Tsang I, Kwok J, Cheung P. Core vector machines: fast SVM training on very large data sets. The Journal of Machine Learning Research, 2005, 6: 363-392[8] Xu D X. Energy, Entropy and Information Potential for Neural Computation [Ph.D. dissertation], University of Florida, USA, 1998[9] Maynou J, Gallardo-Chacon J J, Vallverdu M, Caminal P, Perera A. Computational detection of transcription factor binding sites through differential Renyi entropy. IEEE Transactions on Information Theory, 2010, 56(2): 734-741[10] Qian Peng-Jiang, Wang Shi-Tong, Deng Zhao-Hong. Fast adaptive similarity-based clustering using sparse Parzen window density estimation. Acta Automatica Sinica, 2011, 37(2): 179-187(钱鹏江, 王士同, 邓赵红. 基于稀疏Parzen窗密度估计的快速自适应相似度聚类方法. 自动化学报, 2011, 37(2): 179-187)[11] Jenssen R. Kernel entropy component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 847-860[12] Chen S, Hong X, Harris C J. Probability density estimation with tunable kernels using orthogonal forward regression. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(4): 1101-1114[13] Zeng X, Durrani T S. Estimation of mutual information using copula density function. Electronics Letters, 2011, 47(8): 493-494[14] Jeon B, Landgrebe D A. Fast Parzen density estimation using clustering-based branch and bound. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(9): 950-954[15] Girolami M, He C. Probability density estimation from optimally condensed data samples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1253-1264[16] Freedman D, Kisilev P. Fast data reduction via KDE approximation. In: Proceedings of the Data Compression Conference. Utah, USA: IEEE, 2009. 445-445[17] Heiler M, Keuchel J, Schnorr C. Semidefinite clustering for image segmentation with a-priori knowledge. In: Proceedings of the 27th Symposium of the German Association for Pattern Recognition. Vienna, Austria: Springer, 2005. 309-317[18] Steele J M. The Cauchy Schwarz Master Class: an Introduction to the Art of Mathematical Inequalities. New York: Cambridge University Press, 2004. 99-102[19] Yang M S, Wu K L. A similarity-based robust clustering method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(4): 434-448[20] Chen P H, Fan R E, Lin C J. A study on SMO-type decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 2006, 17(4): 893-908[21] Fan R E, Chen P H, Lin C J. Working set selection using second order information for training support vector machines. The Journal of Machine Learning Research, 2005, 6: 1889-1918
  • 加载中
计量
  • 文章访问数:  2251
  • HTML全文浏览量:  62
  • PDF下载量:  979
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-30
  • 修回日期:  2011-07-01
  • 刊出日期:  2011-12-20

目录

    /

    返回文章
    返回