2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于循环显著性校准网络的胰腺分割方法

邱成健 刘青山 宋余庆 刘哲

邱成健, 刘青山, 宋余庆, 刘哲. 基于循环显著性校准网络的胰腺分割方法. 自动化学报, 2022, 48(11): 2703−2717 doi: 10.16383/j.aas.c210865
引用本文: 邱成健, 刘青山, 宋余庆, 刘哲. 基于循环显著性校准网络的胰腺分割方法. 自动化学报, 2022, 48(11): 2703−2717 doi: 10.16383/j.aas.c210865
Qiu Cheng-Jian, Liu Qing-Shan, Song Yu-Qing, Liu Zhe. Pancreas segmentation based on recurrent saliency calibration network. Acta Automatica Sinica, 2022, 48(11): 2703−2717 doi: 10.16383/j.aas.c210865
Citation: Qiu Cheng-Jian, Liu Qing-Shan, Song Yu-Qing, Liu Zhe. Pancreas segmentation based on recurrent saliency calibration network. Acta Automatica Sinica, 2022, 48(11): 2703−2717 doi: 10.16383/j.aas.c210865

基于循环显著性校准网络的胰腺分割方法

doi: 10.16383/j.aas.c210865
基金项目: 国家自然科学基金(61976106, 61772242, 61572239), 中国博士后科学基金(2017M611737), 江苏省六大人才高峰计划(DZXX-122), 江苏省研究生科研创新计划(KYCX21_3374)资助
详细信息
    作者简介:

    邱成健:江苏大学计算机科学与通信工程学院博士博士研究生. 主要研究方向为医学图像分割. E-mail: 2111908005@stmail.ujs.edu.cn

    刘青山:南京信息工程大学自动化学院教授. 主要研究方向为视频内容分析与理解. E-mail: qsliu@nuist.edu.cn

    宋余庆:江苏大学计算机科学与通信工程学院教授. 主要研究方向为医学图像分析, 数据挖掘. E-mail: yqsong@ujs.edu.cn

    刘哲:江苏大学计算机科学与通信工程学院教授. 主要研究方向为数据智能处理, 医学图像分析. 本文通信作者. E-mail: lzhe@ujs.edu.cn

Pancreas Segmentation Based on Recurrent Saliency Calibration Network

Funds: Supported by National Natural Science Foundation of China (61976106, 61772242, 61572239), China Postdoctoral Science Foundation (2017M611737), Six Talent Peaks Project in Jiangsu Province (DZXX-122), and Graduate Student Scientific Research Innovation Projects in Jiangsu Province (KYCX21_3374)
More Information
    Author Bio:

    QIU Cheng-Jian Ph.D. candidate at the School of Computer Science and Communication Engineering, Jiangsu University. His main research interest is medical image segmentation

    LIU Qing-Shan Professor at the School of Automation, Nanjing University of Information Science and Technology. His main research interest is video content analysis and understanding

    SONG Yu-Qing Professor at the School of Computer Science and Communication Engineering, Jiangsu University. His research interest covers medical image analysis and data mining

    LIU Zhe Professor at the School of Computer Science and Communication Engineering, Jiangsu University. Her research interest covers intelligent data processing and medical image analysis. Corresponding author of this paper

  • 摘要: 胰腺的准确分割对于胰腺癌的识别和分析至关重要. 研究者提出通过第一阶段粗分割掩码的位置信息缩小第二阶段细分割网络输入的由粗到细分割方法, 尽管极大地提升了分割精度, 但是在胰腺分割过程中对于上下文信息的利用却存在以下两个问题: 1) 粗分割和细分割阶段分开训练, 细分割阶段缺少粗分割阶段分割掩码信息, 抑制了阶段间上下文信息的流动, 导致部分细分割阶段结果无法比粗分割阶段更准确; 2) 粗分割和细分割阶段单批次相邻预测分割掩码之间缺少信息互监督, 丢失切片上下文信息, 增加了误分割风险. 针对上述问题, 提出了一种基于循环显著性校准网络的胰腺分割方法. 通过循环使用前一阶段输出的胰腺分割掩码作为当前阶段输入的空间权重, 进行两阶段联合训练, 实现阶段间上下文信息的有效利用; 提出卷积自注意力校准模块进行胰腺预测分割掩码切片上下文信息跨顺序互监督, 显著改善了相邻切片误分割现象. 提出的方法在公开的数据集上进行了验证, 实验结果表明其改善误分割结果的同时提升了平均分割精度.
  • 图  1  粗细分割存在问题示例

    Fig.  1  A failure case of the coarse-to-fine pancreas segmentation approach

    图  2  误分割示例

    Fig.  2  An example of false segmentation

    图  3  循环显著性校准网络

    Fig.  3  Recurrent saliency calibration network

    图  4  迭代过程

    Fig.  4  Iteration process

    图  5  基于最小矩形框的定位过程

    Fig.  5  The process of localization based on minimum rectangle algorithm

    图  6  卷积自注意力校准模块网络图

    Fig.  6  Network of convolution self-attention calibration module

    图  7  本文方法在NIH数据集及MSD数据集上箱线图

    Fig.  7  Box plot of the method in this paper on NIH dataset and MSD dataset

    图  8  NIH数据集分割结果对比

    Fig.  8  Comparison of segmentation results on NIH dataset

    图  9  MSD数据集分割结果对比

    Fig.  9  Comparison of segmentation results on MSD dataset

    表  1  粗细分割分开训练、联合训练和循环显著性联合训练分割结果

    Table  1  Segmentation of coarse-to-fine separate training, joint training and recurrent saliency joint training

    方法平均 DSC (%) ± Std (%)最大 DSC (%)最小 DSC (%)
    NIHMSDNIHMSDNIHMSD
    粗细分割分开训练$81.96 \pm 5.79$$78.92 \pm 9.61$89.5889.9148.3951.23
    粗细分割联合训练$83.08 \pm 5.47$$80.80 \pm 8.79$90.5891.1349.9452.79
    循环显著性网络联合训练$85.56 \pm 4.79$$83.24 \pm 5.93$91.1492.8062.8264.47
    下载: 导出CSV

    表  2  循环显著性网络测试结果

    Table  2  Test results of recurrent saliency network segmentation

    迭代次数平均 DSC (%) ± Std (%)最大 DSC (%)最小 DSC (%)
    NIHMSDNIHMSDNIHMSD
    第 0 次迭代 (粗分割)$76.81 \pm 9.68$$73.46 \pm 11.73$87.9488.6740.1247.76
    第 1 次迭代$84.89 \pm 5.14$$81.67 \pm 8.05$91.0291.8950.3652.90
    第 2 次迭代$83.34\pm 5.07$$82.23 \pm 7.57$90.9691.9453.7356.81
    第 3 次迭代$85.63 \pm 4.96$$82.78 \pm 6.83$91.0892.3257.9658.04
    第 4 次迭代$85.79 \pm 4.83$$82.94 \pm 6.46$91.1592.5662.9763.73
    第 5 次迭代$85.82 \pm 4.82$$83.15 \pm 6.04$91.2092.7762.8563.99
    第 6 次迭代$85.86 \pm 4.79$$83.24 \pm 5.93$91.1492.8062.8264.47
    下载: 导出CSV

    表  3  添加校准模块结果对比

    Table  3  Comparison results of adding calibration module

    方法平均 DSC (%) ± Std (%)最大 DSC (%)最小 DSC (%)
    NIHMSDNIHMSDNIHMSD
    粗细分割联合训练未添加校准模块$83.08 \pm 5.47$$80.80 \pm 8.79$90.5891.1349.9452.79
    粗细分割联合训练添加校准模块$84.72 \pm 5.07$$82.09 \pm 7.91$90.9892.9050.2753.35
    循环显著性网络未添加校准模块$85.86 \pm 4.79$$83.24 \pm 5.93$91.1492.8062.8264.47
    循环显著性网络添加校准模块$87.11 \pm 4.02$$85.13 \pm 5.17$92.5794.4867.3068.24
    下载: 导出CSV

    表  4  胰腺分割基于CLSTM和自注意力结果对比

    Table  4  Comparison results based on CLSTM and self-attention mechanism in pancreas segmentation

    方法平均 DSC (%) ± Std (%)最大 DSC (%)最小 DSC (%)
    NIHMSDNIHMSDNIHMSD
    基于 CLSTM 校准模块$86.13 \pm 4.54$$84.21 \pm 5.80$91.2093.4763.1864.76
    基于 ConvGRU 校准模块$86.34 \pm 4.21$$84.41\pm 5.62$92.3194.0565.7366.02
    基于 TrajGRU 校准模块$86.96 \pm 4.14$$84.87 \pm 5.22$92.4994.3267.2067.93
    基于卷积自注意力校准模块$ 87.11 \pm 4.02$$85.13 \pm 5.17$92.5794.4867.3068.24
    下载: 导出CSV

    表  5  NIH数据集上不同分割方法结果比较(“—”表示文献中缺少参数说明)

    Table  5  Comparison of different segmentation methods on NIH dataset (“—” indicates a lack of reference in the literature)

    方法分割维度平均 DSC (%) ±
    Std (%)
    最大 DSC (%)最小 DSC (%)
    文献 [22]2D$71.80 \pm 10.70$86.9025.00
    文献 [23]2D$81.27 \pm 6.27$88.9650.69
    文献 [36]2D$82.40 \pm 6.70$90.1060.00
    文献 [3]2D$82.37 \pm 5.68$90.8562.43
    文献 [37]3D$84.59 \pm 4.86$91.4569.62
    文献 [10]3D$85.99 \pm 4.51$91.2057.20
    文献 [5]3D$85.93 \pm 3.42$91.4875.01
    文献 [29]3D$82.47 \pm 5.50$91.1762.36
    文献 [20]2D$82.87 \pm 1.00$87.6781.18
    文献 [19]2D$84.90 \pm -$91.4661.82
    文献 [26]2D$85.35 \pm 4.13$91.0571.36
    文献 [21]2D$85.40 \pm 1.60$
    文献 [30]3D$86.19 \pm -$91.9069.17
    本文方法2D87.11 ± 4.0292.5767.30
    下载: 导出CSV

    表  6  MSD数据集上不同分割方法结果比较

    Table  6  Comparison of different segmentation methods on MSD dataset

    方法分割维度平均 DSC (%) ±
    Std (%)
    最大 DSC (%)最小 DSC (%)
    文献 [39]3D$79.98\pm7.71$93.7361.64
    文献 [38]3D$82.37\pm5.68$90.8562.43
    文献 [28]2D$84.71\pm7.13$95.5458.62
    文献 [40]3D$84.22\pm5.91$92.7566.58
    本文方法2D85.13 ± 5.1794.4868.24
    下载: 导出CSV

    表  7  NIH数据集不同网络输入切片数目分割结果比较

    Table  7  Comparison of the segmentation of different network input slices on NIH dataset

    网络输入
    切片数目
    分割维度平均 DSC (%) ±
    Std (%)
    最大 DSC (%)最小 DSC (%)
    32D$87.11\pm4.02$92.5767.30
    52D$87.53\pm3.74$92.6969.32
    72D$87.96\pm3.25$92.9471.91
    下载: 导出CSV

    表  8  MSD数据集不同网络输入切片数目分割结果比较

    Table  8  Comparison of the segmentation of different network input slices on MSD dataset

    网络输入
    切片数目
    分割维度平均 DSC (%) ±
    Std (%)
    最大 DSC (%)最小 DSC (%)
    32D$85.13\pm5.17$94.4868.24
    52D$85.86\pm5.01$94.7570.31
    72D$86.29\pm4.80$95.0173.07
    下载: 导出CSV

    表  9  不同分割方法参数量比较

    Table  9  Comparison of the number of parameters of different segmentation methods

    方法分割维度参数量
    FCN[2]2D134.26 M
    UNet[15]2D28.34 M
    3D UNet[41]3D16.31 M
    AttentionUNet[42]2D35.06 M
    UNet++ [43]2D36.74 M
    Fix-point[3]2D807.93 M
    GGPFN[28]2D + 3D42.00 M
    本文方法2D59.47 M
    下载: 导出CSV

    表  10  不同分割方法时间消耗比较(“—”表示文献中缺少参数说明)

    Table  10  Comparison of time consumption of different segmentation methods (“—” indicates a lack of reference in the literature)

    方法分割维度每个病例平均
    测试时间
    (min)
    训练时间
    (h)
    设备
    文献 [44]2D$2\sim 3$
    文献 [22]2D$1\sim 3$$\sim 55$GTX Titan Z (12 GB)
    文献 [23]2D$2\sim 3$$9\sim12$Titan X (12 GB)
    文献 [3]2D$\sim 3$
    文献 [36]2D$\sim 3$GTX Titan X (12 GB)
    本文方法2D1.1$\sim 8$RTX 2080ti (11 GB)
    下载: 导出CSV
  • [1] Siegel R, Miller K, Fuchs H, Jemal, A. Cancer statistics 2021. CA: A Cancer Journal for Clinicians, 2021, 71(1): 7-33 doi: 10.3322/caac.21654
    [2] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 3431−3440
    [3] Zhou Y, Xie L, Shen W, Wang Y, Fishman E K, Yuille A L. A fixed-point model for pancreas segmentation in abdominal CT scans. In: Proceedings of the 2017 International Conference on Medical Image Computing and Computer-assisted Intervention. Quebec, Canada: Springer, 2017. 693−701
    [4] Zhang Y, Wu J, Liu Y, Chen Y F, Chen W, Wu E X, et al. A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set. Medical Image Analysis, 2021, 68(2): 101884-101889
    [5] Wang W, Song Q, Feng R, Chen T, Chen J, Chen D Z, et al. A fully 3D cascaded framework for pancreas segmentation. In: Proceedings of the 2020 IEEE International Symposium on Biomedical Imaging (ISBI). Lowa, USA: IEEE, 2020. 207−211
    [6] 马超, 刘亚淑, 骆功宁, 王宽全. 基于级联随机森林与活动轮廓的3D MR图像分割. 自动化学报, 2019, 45(5): 1004-1014

    Ma Chao, Liu Ya-Shu, Luo Gong-Ning, Wang Kuan-Quan. Combining concatenated random forests and active contour for the 3D MR images segmentation. Acta Automatica Sinica, 2019, 45(5): 1004-1014
    [7] Shi X, Chen Z, Wang H, Yeung D Y, Wong W K, Woo W. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In: Proceedings of the 2015 Advances in Neural Information Processing Systems. Quebec, Canada: MIT, 2015. 802−810
    [8] Yang Z, Zhang L, Zhang M, Feng J, Wu Z, Ren F, et al. Pancreas segmentation in abdominal CT scans using inter-/intra-slice contextual information with a cascade neural network. In: Proceedings of the 2019 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE, 2019. 5937−5940
    [9] Li H, Li J, Lin X, Qian X. A model-driven stack-based fully convolutional network for pancreas segmentation. In: Proceedings of the 5th International Conference on Communication, Image and Signal Processing (CCISP). Chengdu, China: IEEE, 2020. 288−293
    [10] Zhao N, Tong N, Ruan D, Sheng K. Fully automated pancreas segmentation with two-stage 3D convolutional neural networks. In: Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention. Shenzhen, China: Springer, 2019. 201−209
    [11] Ballas N, Yao Y, Pal C, Courville A. Delving deeper into convolutional networks for learning video representations. arXiv preprint arXiv: 1511.06432, 2015.
    [12] Farag A, Lu L, Turkbey E, Liu J, Summers R M. A bottom-up approach for automatic pancreas segmentation in abdominal CT scans. In: Proceedings of the 2014 International Conference on Medical Image Computing and Computer-Assisted Intervention Workshop on Computational and Clinical Challenges in Abdominal Imaging. Cambridge, USA: Springer, 2014. 103−113
    [13] Kitasaka T, Oda M, Nimura Y, Hayashi Y, Fujiwara M, Misawa K, et al. Structure specific atlas generation and its application to pancreas segmentation from contrasted abdominal CT volumes. In: Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention Workshop on Medical Computer Vision. Munich, Germany: Springer, 2015. 47−56
    [14] Deng G, Wu Z, Wang C, Xu M, Zhong Y. CCANet: Class-constraint coarse-to-fine attentional deep network for subdecimeter aerial image semantic segmentation. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60(1): 1-20
    [15] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015. 234−241
    [16] 李阳, 赵于前, 廖苗, 廖胜辉, 杨振. 基于水平集和形状描述符的腹部CT序列肝脏自动分割. 自动化学报, 2021, 47(2): 327-337

    Li Yang, Zhao Yu-Qian, Liao Miao, Liao Sheng-Hui, Yang Zhen. Automatic liver segmentation from CT volumes based on level set and shape descriptor. Acta Automatica Sinica, 2021, 47(2): 327-337
    [17] 夏平, 施宇, 雷帮军, 龚国强, 胡蓉, 师冬霞. 复小波域混合概率图模型的超声医学图像分割. 自动化学报, 2021, 47(1): 185-196

    Xia Ping, Shi Yu, Lei Bang-Jun, Gong Guo-Qiang, Hu Rong, Shi Dong-Xia. Ultrasound medical image segmentation based on hybrid probabilistic graphical model in complex-wavelet domain. Acta Automatica Sinica, 2021, 47(1): 185-196
    [18] 冯宝, 陈业航, 刘壮盛, 李智, 宋嵘, 龙晚生. 结合MRF能量和模糊速度的乳腺癌图像分割方法. 自动化学报, 2020, 46(6): 1188-1199

    Feng Bao, Chen Ye-Hang, Liu Zhuang-Sheng, Li Zhi, Song Rong, Long Wan-Sheng. Segmentation of breast cancer on DCE-MRI images with MRF energy and fuzzy speed function. Acta Automatica Sinica, 2020, 46(6): 1188-1199
    [19] Zhang D, Zhang J, Zhang Q, Han J, Zhang S, Han J. Automatic pancreas segmentation based on lightweight DCNN modules and spatial prior propagation. Pattern Recognition, 2021, 114(6): Article No. 107762
    [20] Huang M L, Wu Z Y. Semantic segmentation of pancreatic medical images by using convolutional neural network. Biomedical Signal Processing and Control, 2022, 73(3): 103458-103470
    [21] Liu Z, Su J, Wang R H, Jiang R, Song Y Q, Zhang D Y, et al. Pancreas Co-segmentation based on dynamic ROI extraction and VGGU-Net. Expert Systems With Applications, 2022, 192(6): 116444-116453
    [22] Roth H R, Lu L, Farag A, Shin H C, Liu J M, Turkbey E B, et al. Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. In: Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015. 556−564
    [23] Roth H R, Lu L, Lay N, Harrison A P, Farag A, Sohn A, et al. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Medical Image Analysis, 2018, 45(3): 94-107
    [24] Karasawa K, Oda M, Kitasaka T, Misawa K, Fujiwara M, Chu C, et al. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure. Medical Image Analysis, 2017, 39(5): 18-28
    [25] Man Y, Huang Y, Feng J, Li X, Wu F. Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net. IEEE Transactions on Medical Imaging, 2019, 38(8): 1971-1980 doi: 10.1109/TMI.2019.2911588
    [26] Li J, Lin X, Che H, Li H, Qian X. Pancreas segmentation with probabilistic map guided bi-directional recurrent UNet. Physics in Medicine and Biology, 2021, 66(11): 115010-115026 doi: 10.1088/1361-6560/abfce3
    [27] Khosravan N, Mortazi A, Wallace M, Bagci U. Pan: Projective adversarial network for medical image segmentation. In: Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention. Shenzhen, China: Springer, 2019. 68−76
    [28] Fang C, Li G, Pan C, Li Y, Yu Y. Globally guided progressive fusion network for 3D pancreas segmentation. In: Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention. Shenzhen, China: Springer, 2019. 210−218
    [29] Mo J, Zhang L, Wang Y, Huang H. Iterative 3D feature enhancement network for pancreas segmentation from CT images. Neural Computing and Applications, 2020, 32(16): 12535-12546 doi: 10.1007/s00521-020-04710-3
    [30] Wang Y, Zhang J, Cui H, Zhang Y, Xia Y. View adaptive learning for pancreas segmentation. Biomedical Signal Processing and Control, 2021, 66(4): 102347-102361
    [31] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. In: Proceedings of the 2017 Advances in Neural Information Processing Systems. California, USA: MIT, 2017. 5998−6008
    [32] Simpson A L, Antonelli M, Bakas S, Bilello M, Farahani K, Van G. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv: 1902.09063, 2019.
    [33] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Florida, USA: ML Research, 2017. 315−323
    [34] Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412.6980, 2014.
    [35] Shi X J, Gao Z H, Lausen L, Wang H, Yeung D Y, Wong W K, et al. Deep learning for precipitation nowcasting: A benchmark and a new model. In: Proceedings of the 2017 Advances in Neural Information Processing Systems. California, USA: MIT, 2017. 5617−5627
    [36] Cai J, Lu L, Xie Y, Xing F, Yang Y. Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function. arXiv preprint arXiv: 1707.04912, 2017.
    [37] Zhu Z, Xia Y, Shen W, Fishman E, Yuille A. A 3D coarse-to-fine framework for volumetric medical image segmentation. In: Proceedings of the 2018 International Conference on 3D Vision (3DV). Verona, Italy: IEEE, 2018. 682−690
    [38] Roth H R, Shen C, Oda H, Oda M, Hayashi Y, Misawa K, et al. Deep learning and its application to medical image segmentation. Medical Imaging Technology, 2018, 36(2): 63-71
    [39] Roth H R, Oda H, Zhou X, Shimizu N, Yang Y, Hayashi Y, et al. An application of cascaded 3D fully convolutional networks for medical image segmentation. Computerized Medical Imaging and Graphics, 2018, 66(4): 90-99
    [40] Li W, Wu X, Hu Y, Wang L, He Z, Du J. High-resolution recurrent gated fusion network for 3D pancreas segmentation. In: Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN). Shenzhen, China: IEEE, 2021. 1−7
    [41] Cicek O, Abdulkadir A, Lienkamp S S, Brox T, Ronneberger O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In: Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens, Greece: Springer, 2016. 424−432
    [42] Oktay O, Schlemper J, Folgoc L L, Lee M, Heinrich M, Misawa K, et al. Attention U-Net: Learning where to look for the pancreas. arXiv preprint arXiv: 1804.03999, 2018.
    [43] Zhou Z, Siddiquee R M M, Tajbakhsh N, Liang J. Unet++: A nested U-Net architecture for medical image segmentation. In: Proceedings of the 2018 Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Granada, Spain: Springer, 2018. 3−11
    [44] Roth H, Lu L, Farag A, Sohn A, Summers R. Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens, Greece: Springer, 2016. 451−459
  • 加载中
图(9) / 表(10)
计量
  • 文章访问数:  576
  • HTML全文浏览量:  174
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 录用日期:  2022-03-13
  • 网络出版日期:  2022-05-04
  • 刊出日期:  2022-11-22

目录

    /

    返回文章
    返回