2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

文本无关说话人识别中句级特征提取方法研究综述

陈晨 韩纪庆 陈德运 何勇军

陈晨, 韩纪庆, 陈德运, 何勇军. 文本无关说话人识别中句级特征提取方法研究综述. 自动化学报, 2022, 48(3): 664−688 doi: 10.16383/j.aas.c200521
引用本文: 陈晨, 韩纪庆, 陈德运, 何勇军. 文本无关说话人识别中句级特征提取方法研究综述. 自动化学报, 2022, 48(3): 664−688 doi: 10.16383/j.aas.c200521
Chen Chen, Han Ji-Qing, Chen De-Yun, He Yong-Jun. Utterance-level feature extraction in text-independent speaker recognition: A review. Acta Automatica Sinica, 2022, 48(3): 664−688 doi: 10.16383/j.aas.c200521
Citation: Chen Chen, Han Ji-Qing, Chen De-Yun, He Yong-Jun. Utterance-level feature extraction in text-independent speaker recognition: A review. Acta Automatica Sinica, 2022, 48(3): 664−688 doi: 10.16383/j.aas.c200521

文本无关说话人识别中句级特征提取方法研究综述

doi: 10.16383/j.aas.c200521
基金项目: 国家自然科学基金(62101163), 黑龙江省自然科学基金(LH2021F029), 中国博士后科学基金(2021M701020), 黑龙江省博士后专项经费(LBH-Z20020), 黑龙江省普通高校基本科研业务费专项资金(2020-KYYWF-0341)资助
详细信息
    作者简介:

    陈晨:哈尔滨理工大学讲师, 博士后. 主要研究方向为语音信号处理, 音频信息分析, 说话人识别. E-mail: chenc@hrbust.edu.cn

    韩纪庆:哈尔滨工业大学教授. 主要研究方向为语音信号处理, 音频信息分析. 本文通信作者. E-mail: jqhan@hit.edu.cn

    陈德运:哈尔滨理工大学教授. 主要研究方向为模式识别, 机器学习. E-mail: chendeyun@hrbust.edu.cn

    何勇军:哈尔滨理工大学教授. 主要研究方向为语音信号处理, 图像处理. E-mail: holywit@163.com

Utterance-level Feature Extraction in Text-independent Speaker Recognition: A Review

Funds: Supported by National Natural Science Foundation of China (62101163), Natural Science Foundation of Heilongjiang Province (LH2021F029), China Postdoctoral Science Foundation (2021M701020), Heilongjiang Postdoctoral Fund (LBH-Z20020), and Fundamental Research Foundation for Universities of Heilongjiang Province (2020-KYYWF-0341)
More Information
    Author Bio:

    CHEN Chen Lecturer and postdoctor at Harbin University of Science and Technology. Her research interest covers speech signal processing, audio information analysis, speaker recognition

    HAN Ji-Qing Professor at Harbin Institute of Technology. His research interest covers speech signal processing and audio information analysis. Corresponding author of this paper

    CHEN De-Yun Professor at Harbin University of Science and Technology. His research interest covers pattern recognition and machine learning

    HE Yong-Jun Professor at Harbin University of Science and Technology. His research interest covers speech signal processing and image processing

  • 摘要: 句级 (Utterance-level) 特征提取是文本无关说话人识别领域中的重要研究方向之一. 与只能刻画短时语音特性的帧级 (Frame-level) 特征相比, 句级特征中包含了更丰富的说话人个性信息; 且不同时长语音的句级特征均具有固定维度, 更便于与大多数常用的模式识别方法相结合. 近年来, 句级特征提取的研究取得了很大的进展, 鉴于其在说话人识别中的重要地位, 本文对近期具有代表性的句级特征提取方法与技术进行整理与综述, 并分别从前端处理、基于任务分段式与驱动式策略的特征提取方法, 以及后端处理等方面进行论述, 最后对未来的研究趋势展开探讨与分析.
  • 图  1  语音活动检测的功能示意图

    Fig.  1  Schematic diagram of voice activity detection

    图  2  MFCC特征提取过程示意图

    Fig.  2  Schematic diagram of MFCC extraction

    图  3  帧级特征序列经特征规整后的直方图对比

    Fig.  3  Histogram comparison of frame-level feature sequences after feature normalization

    图  4  GMM均值超矢量提取过程示意图

    Fig.  4  Schematic diagram of GMM mean supervector extraction

    图  5  两种网络结构对比

    Fig.  5  Comparison of two different network structures

    图  6  两种目标函数对应网络的结构示意图对比

    Fig.  6  Comparison of the structure of the networks corresponding to the two different objective functions

    图  7  TDMF方法示意图

    Fig.  7  Schematic diagram of TDMF method

    表  1  不同特征空间学习方法汇总信息

    Table  1  Information of different feature space learning methods

    方法描述特点
    经典MAP方法[29]$ {\boldsymbol{M}}_{s,h}={\boldsymbol{m}}+{\boldsymbol{D}}{\boldsymbol{z}}_{s,h} $MAP 自适应方法
    $ {\boldsymbol{D}} $为对角矩阵, $ {\boldsymbol{z}}_{s,h} \sim {\rm{N}}\left({\bf{0}},{\boldsymbol{I}}\right) $无法进行信道补偿
    本征音模型[36-37]$ {\boldsymbol{M}}_{s,h}={\boldsymbol{m}}+{\boldsymbol{V}}{\boldsymbol{y}}_{s,h} $能够获得低维句级特征表示
    $ {\boldsymbol{V}} $为低秩矩阵, $ {\boldsymbol{y}}_{s,h} \sim {\rm{N}}\left({\bf{0}},{\boldsymbol{I}}\right) $无法进行信道补偿
    本征信道模型[37]$ {\boldsymbol{M}}_{s,h}={\boldsymbol{m}}+{\boldsymbol{D}}{\boldsymbol{z}}_{s}+{\boldsymbol{U}}{\boldsymbol{x}}_{h} $能够进行信道补偿
    $ {\boldsymbol{D}} $为对角矩阵, $ {\boldsymbol{z}}_{s} \sim {\rm{N}}\left({\bf{0}},{\boldsymbol{I}}\right) $需要提供同一说话人的多信道语音数据
    $ {\boldsymbol{U}} $为低秩矩阵, $ {\boldsymbol{y}}_{s,h} \sim {\rm{N}}\left({\bf{0}},{\boldsymbol{I}}\right) $说话人子空间中包含残差信息
    联合因子分析模型[38]${\boldsymbol{M} }_{s,h}={\boldsymbol{m} }+V{\boldsymbol{y} }_{s}+{\boldsymbol{U} }{\boldsymbol{x} }_{h}+{\boldsymbol{D} }{\boldsymbol{z} }_{s,h}$独立学习说话人信息与信道信息
    需要提供同一说话人的多信道语音数据, 计算复杂度高
    $ {\boldsymbol{V}} $为低秩矩阵, $ {\boldsymbol{y}}_{s} \sim {\rm{N}}\left({\bf{0}},{\boldsymbol{I}}\right) $
    $ {\boldsymbol{U}} $为低秩矩阵, $ {\boldsymbol{x}}_{h} \sim {\rm{N}}\left({\bf{0}},{\boldsymbol{I}}\right) $
    $ {\boldsymbol{D}} $为对角矩阵, $ {\boldsymbol{z}}_{s} \sim {\rm{N}}\left({\bf{0}},{\boldsymbol{I}}\right) $
    总变化空间模型[39-40]$ {\boldsymbol{M}}_{s,h}={\boldsymbol{m}}+{\boldsymbol{T}}{\boldsymbol{w}}_{s,h}+{\boldsymbol{\varepsilon}}_{s,h} $学习均值超矢量中的全部变化信息
    $ {\boldsymbol{T}} $为低秩矩阵, $ {\boldsymbol{w}}_{s,h} \sim {\rm{N}}\left({\bf{0}},{\boldsymbol{I}}\right) $获取 I-vector 特征后再进行会话补偿
    $ {\boldsymbol{\varepsilon}}_{s,h} $为残差矢量$ {\boldsymbol{\varepsilon}}_{s,h} $在不同方法中的形式不同
    下载: 导出CSV

    表  2  基于不同残差假设的无监督总变化空间模型

    Table  2  Unsupervised TVS model based on different residual assumptions

    方法描述E 步M 步计算复杂度
    FEFA[40]$ {{\boldsymbol{M} }_{s,h}={\boldsymbol{m} }+{\boldsymbol{T} }{\boldsymbol{w} }_{s,h}}$
    输入为统计量无残差假设
    ${\begin{align}&{\boldsymbol{L} }={\left({\boldsymbol{I} }+\displaystyle\sum\limits_{c=1}^{C}{N}_{s,h}^{c}{ {\boldsymbol{T} } }_{c}^{\rm{T} }{\boldsymbol{\Sigma }}_{c}^{-1}{ {\boldsymbol{T} } }_{c}\right)}^{-1}\\ &{\boldsymbol{E} }={\boldsymbol{L} }\displaystyle\sum\limits_{c=1}^{C}{ {\boldsymbol{T} } }_{c}^{\rm{T} }{\boldsymbol{\Sigma } }_{c}^{-1}\left({\boldsymbol{F} }_{s,h}^{c}-{N}_{s,h}^{c}{\boldsymbol{\mu } }_{c}\right)\\ &\Upsilon ={\boldsymbol{L}}+{\boldsymbol{E}}{{\boldsymbol{E}}}^{\rm{T}}\end{align}} $$ {{ {\boldsymbol{T} } }_{c}=\left[\displaystyle\sum\limits_{s,h}\left({\boldsymbol{F} }_{s,h}^{c}-{N}_{s,h}^{c}{\boldsymbol{\mu } }_{c}\right){\boldsymbol{E} }\right]{\left(\displaystyle\sum\limits_{s,h}{N}_{s,h}^{c}\Upsilon \right)}^{-1}}$$ { {\rm{O}}\left(CFR+C{R}^{2}+{R}^{3}\right)} $
    PPCA[43-44]$ { {\boldsymbol{M}}_{s,h}={\boldsymbol{m}}+{\boldsymbol{T}}{\boldsymbol{w}}_{s,h}+{\boldsymbol{\varepsilon}}_{s,h}} $
    残差协方差矩阵各向同性
    $ {\begin{align}&{\boldsymbol{L} }={\left({\boldsymbol{I} }+\dfrac{1}{ {\sigma }^{2} }{ {\boldsymbol{T} } }^{\rm{T} }{\boldsymbol{T} }\right)}^{-1}\\ &{\boldsymbol{E} }=\dfrac{1}{ {\sigma }^{2} }{\boldsymbol{L} }{ {\boldsymbol{T} } }^{\rm{T} }\left({\boldsymbol{M} }_{s,h}-{\boldsymbol{m} }\right)\\ &\Upsilon ={\boldsymbol{L}}+{\boldsymbol{E}}{{\boldsymbol{E}}}^{\rm{T}} \end{align}}$$ {\begin{aligned}{\boldsymbol{T} }=&\left[\displaystyle\sum\limits_{s,h}\left({\boldsymbol{M} }_{s,h}-{\boldsymbol{m} }\right){\boldsymbol{E} }\right]{\left(\displaystyle\sum\limits_{s,h}\Upsilon \right)}^{-1}\\{\sigma }^{2}=&\;\dfrac{1}{CF\displaystyle\sum\limits _{s,h}1}\{ {\left({\boldsymbol{M} }_{s,h}-{\boldsymbol{m} }\right)}^{\rm{T} }\left({\boldsymbol{M} }_{s,h}-{\boldsymbol{m} }\right)-\\ &{\rm{t} }{\rm{r} }\left(\Upsilon { {\boldsymbol{T} } }^{\rm{T} }{\boldsymbol{T} })\right\} \end{aligned} }$$ {{\rm{O}}\left(CFR\right) }$
    FA[44-45]$ { {\boldsymbol{M}}_{s,h}={\boldsymbol{m}}+{\boldsymbol{T}}{\boldsymbol{w}}_{s,h}+{\boldsymbol{\varepsilon}}_{s,h} }$
    残差协方差矩阵各向异性
    $ {\begin{align} &{\boldsymbol{L}}={\left({\boldsymbol{I}}+{{\boldsymbol{T}}}^{\rm{T}}{\boldsymbol{\varPhi }}^{-1}{\boldsymbol{T}}\right)}^{-1}\\ &{\boldsymbol{E}}={\boldsymbol{L}}{{\boldsymbol{T}}}^{\rm{T}}{\boldsymbol{\varPhi }}^{-1}\left({\boldsymbol{M}}_{s,h}-{\boldsymbol{m}}\right) \\ &\Upsilon ={\boldsymbol{L}}+{\boldsymbol{E}}{{\boldsymbol{E}}}^{\rm{T}}\end{align}} $$ {\begin{aligned}{\boldsymbol{T} }=&\left[\displaystyle\sum\limits_{ {\boldsymbol{s} },{\boldsymbol{h} } }\left({\boldsymbol{M} }_{ {\boldsymbol{s} },{\boldsymbol{h} } }-{\boldsymbol{m} }\right){\boldsymbol{E} }\right]{\left(\displaystyle\sum\limits_{s,h}\Upsilon \right)}^{-1}\\ {\sigma }^{2}=\;&\dfrac{1}{CF\displaystyle\sum\limits _{s,h}1}\{\left({\boldsymbol{M} }_{s,h}-{\boldsymbol{m} }\right){\left({\boldsymbol{M} }_{s,h}-{\boldsymbol{m} }\right)}^{\rm{T} }-\\ &{ {\boldsymbol{T} } }^{\rm{T} }\Upsilon {\boldsymbol{T} }\}\odot {\boldsymbol{I} } \end{aligned} }$$ { {\rm{O}}\left(CFR\right)} $
    下载: 导出CSV

    表  3  基于不同映射关系假设的无监督总变化空间模型

    Table  3  Unsupervised TVS model based on different mapping relations

    目的方法特点
    映射关系改进局部变化模型[47]利用 GMM 均值超矢量中各个高斯分量与 I-vector 特征之间的局部可变性
    稀疏编码[48]利用字典学习来压缩总变化空间矩阵
    广义变化模型[49]将映射关系中高斯分布假设扩展到高斯混合分布
    不理想数据库改善先验补偿[50]对不同数据库中的先验信息进行建模, 学习能够对其进行偿的映射关系
    不确定性传播[51]对映射关系中不确定性因素所产生的影响进行建模, 降低环境失真产生的影响
    学习速度提升广义 I-vector 估计[52]利用正交属性提升计算速度
    随机奇异值分解[53]通过近似估计提升计算速度
    下载: 导出CSV

    表  4  不同有监督总变化空间模型汇总信息

    Table  4  Information of different supervised TVS models

    方法特点
    PLS[54]学习 GMM 均值超矢量与其类别标签的公共子空间,并将其作为总变化空间,
    然后将 GMM 均值超矢量在公共子空间上的投影用作 I-vector 特征
    PPLS[55]学习 GMM 均值超矢量与其类别标签的公共隐变量, 并将其作为 I-vector 特征
    SPPCA[56]学习 GMM 均值超矢量与其对应的长时 GMM 均值超矢量的公共隐变量, 并将其作为 I-vector 特征
    最小最大策略[57]训练使得最大风险最小化的估计器
    下载: 导出CSV

    表  5  不同会话补偿方法汇总信息

    Table  5  Information of different session compensation methods

    目标方法特点
    子空间投影LDA[60]类内散度最小、类间散度最大
    WCCN[61]降低预期错误率
    NAP[62]消除扰动方向
    NDA[63]学习局部类间区分性信息、类内共性信息
    LWLDA[64-65]以成对的方式来获取类内散度
    特征重构SC[66]直接对原始特征进行稀疏重构
    BSBL[67]利用块内相关性对原始特征进行稀疏重构
    FDDL[68]引入 Fisher 正则项来增加字典对不同类别的区分性
    下载: 导出CSV

    表  6  不同目标函数汇总信息

    Table  6  Information of different objective functions

    目标方法目标函数
    多分类交叉熵${L_{{\rm{cro}}} } = - [y\log \hat y + (1 - y)\log (1 - \hat y)]$
    Softmax${L_s} = - \dfrac{1}{N}\displaystyle \sum\limits_{n = 1}^N {\log } \frac{ { { {\rm{e} } ^{ {\boldsymbol{\theta } }_{ {y_n} }^{\rm{T} }f({ {\boldsymbol{x} }_n})} } } }{ {\displaystyle \sum\limits_{k = 1}^K { { {\rm{e} } ^{ {\boldsymbol{\theta } }_k^{\rm{T} }f({ {\boldsymbol{x} }_n})} } } } }$
    Center[98]${L}_{c}=\dfrac{1}{2N}{\displaystyle \sum\limits_{n=1}^{N}\Vert f(}{\boldsymbol{x} }_{n})-{\boldsymbol{c} }_{ {y}_{n} }{\Vert }^{2}$
    L-softmax[99]${L}_{{\rm{l}}\text{-}{\rm{s}}}=-\dfrac{1}{N}{\displaystyle \sum\limits_{n=1}^{N}{\rm{log} } }\displaystyle\frac{ {\rm{e} }^{\Vert { {\boldsymbol{\theta } } }_{ {y}_{n} }\Vert \Vert f({\boldsymbol{x} }_{n})\Vert {\rm{cos} }(m{\alpha }_{ {y}_{n},n})} }{ {\rm{e} }^{\Vert { {\boldsymbol{\theta } } }_{ {y}_{n} }\Vert \Vert f({\boldsymbol{x} }_{n})\Vert {\rm{cos} }(m{\alpha }_{ {y}_{n},n})}+{\displaystyle \sum\limits_{k\ne {y}_{n} }{\rm{e} }^{\Vert { {\boldsymbol{\theta } } }_{k}\Vert \Vert f({\boldsymbol{x} }_{n})\Vert {\rm{cos} }({\alpha }_{k,n})} } }$
    A-softmax[100]${L}_{{\rm{a}}\text{-}{\rm{s}}}=-\dfrac{1}{N}{\displaystyle \sum\limits_{n=1}^{N}{\rm{log} } }\displaystyle\frac{ {\rm{e} }^{\Vert f({\boldsymbol{x} }_{n})\Vert {\rm{cos} }(m{\alpha }_{ {y}_{n},n})} }{ {\rm{e} }^{\Vert f({\boldsymbol{x} }_{n})\Vert {\rm{cos} }(m{\alpha }_{ {y}_{n},n})}+{\displaystyle \sum\limits_{k\ne {y}_{n} }{\rm{e} }^{\Vert { {\boldsymbol{\theta } } }_{k}\Vert \Vert f({\boldsymbol{x} }_{n})\Vert {\rm{cos} }({\alpha }_{k,n})} } }$
    AM-softmax[101]${L_{{\rm{am}}\text{-}{\rm{s}}} } = - \dfrac{1}{N}\displaystyle \sum\limits_{n = 1}^N {\log } \frac{ { { {\rm{e} } ^{s \cdot [\cos ({\alpha _{ {y_n},n} }) - m]} } } }{ { { {\rm{e} } ^{s \cdot [\cos ({\alpha _{ {y_n},n} }) - m]} } + \displaystyle \sum\limits_{k \ne {y_n} } { { {\rm{e} } ^{\cos ({\alpha _{k,n} })} } } } }$
    度量学习Contrastive[102]${L_{{\rm{con}}} } = yd\left[ {f({ {\boldsymbol{\boldsymbol{x} } }_1}),f({ {\boldsymbol{\boldsymbol{x} } }_2})} \right] + (1 - y)\max \{ 0,m - d\left[ {f({ {\boldsymbol{\boldsymbol{x} } }_1}),f({ {\boldsymbol{\boldsymbol{x} } }_2})} \right]\}$
    Triplet[103]${L_{{\rm{trip}}} } = \max \{ 0,d\left[ {f({ {\boldsymbol{\boldsymbol{x} } }_p}),f({ {\boldsymbol{\boldsymbol{x} } }_a})} \right] - d\left[ {f({ {\boldsymbol{\boldsymbol{x} } }_n}),f({ {\boldsymbol{\boldsymbol{x} } }_a})} \right] + m\}$
    下载: 导出CSV

    表  7  联合优化方法汇总信息

    Table  7  Information of different joint optimization methods

    阶段方法描述
    会话补偿 + 分类器DNN-PLDA[104]用 PLDA 指导 DNN 学习
    Bilevel[105]稀疏编码用于会话补偿, 并分别用 SVM 与 softmax 分类器指导稀疏字典学习
    总变化空间 + 分类器TDVM[106]用 PLDA 指导 TVS 学习
    全部阶段F2S2I[107]用 PLDA 指导 DNN 模仿 I-vector 方法各阶段进行学习
    TDMF[108]用 PLDA 指导 UBM 与 TVS 学习
    下载: 导出CSV

    表  8  常用数据库信息

    Table  8  Information of common databases

    数据库年份声学环境类别数语音段数/总时长开源
    CN-CELEB[126]2019多媒体1000300 h
    VoxCeleb[89]:VoxCeleb1[73]2017多媒体1251153516
    VoxCeleb2[75]2018多媒体61121128246
    SITW[127]2016多媒体2992800
    Forensic Comparison[128]2015电话5521264
    NIST SRE12[129]2012电话/麦克风2000+
    ELSDSR[130]2005纯净语音22198
    SWITCHBOARD[131]1992电话311433039
    TIMIT[132]1990纯净语音6306300
    下载: 导出CSV
  • [1] Reynolds D A. An overview of automatic speaker recognition technology. In: Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando, USA: IEEE, 2002. IV-4072−IV-4075
    [2] Aghajan H, Delgado R L C, Augusto J C. Human-Centric Interfaces for Ambient Intelligence. Burlington: Academic Press, 2010.
    [3] Poddar A, Sahidullah M, Saha G. Speaker verification with short utterances: A review of challenges, trends and opportunities. IET Biometrics, 2018, 7(2): 91-101 doi: 10.1049/iet-bmt.2017.0065
    [4] 韩纪庆, 张磊, 郑铁然. 语音信号处理. 第3版. 北京: 清华大学出版社, 2019.

    Han Ji-Qing, Zhang Lei, Zheng Tie-Ran. Speech Signal Processing (3rd edition). Beijing: Tsinghua University Press, 2019.
    [5] Nematollahi M A, Al-Haddad S A R. Distant speaker recognition: An overview. International Journal of Humanoid Robotics, 2016, 13(2): Article No. 1550032 doi: 10.1142/S0219843615500322
    [6] Hansen J H L, Hasan T. Speaker recognition by machines and humans: A tutorial review. IEEE Signal Processing Magazine, 2015, 32(6): 74-99 doi: 10.1109/MSP.2015.2462851
    [7] Kinnunen T, Li H Z. An overview of text-independent speaker recognition: From features to supervectors. Speech Communication, 2010, 52(1): 12-40 doi: 10.1016/j.specom.2009.08.009
    [8] Markel J, Oshika B, Gray A. Long-term feature averaging for speaker recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1977, 25(4): 330-337 doi: 10.1109/TASSP.1977.1162961
    [9] Li K, Wrench E. An approach to text-independent speaker recognition with short utterances. In: Proceedings of the 1983 IEEE International Conference on Acoustics, Speech, and Signal Processing. Boston, USA: IEEE, 1983. 555−558
    [10] Chen S H, Wu H T, Chang Y, Truong T K. Robust voice activity detection using perceptual wavelet-packet transform and Teager energy operator. Pattern Recognition Letters, 2007, 28(11): 1327-1332 doi: 10.1016/j.patrec.2006.11.023
    [11] Fujimoto M, Ishizuka K, Nakatani T. A voice activity detection based on the adaptive integration of multiple speech features and a signal decision scheme. In: Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA: IEEE, 2008. 4441−4444
    [12] Li K, Swamy M N S, Ahmad M O. An improved voice activity detection using higher order statistics. IEEE Transactions on Speech and Audio Processing, 2005, 13(5): 965-974 doi: 10.1109/TSA.2005.851955
    [13] Soleimani S A, Ahadi S M. Voice activity detection based on combination of multiple features using linear/kernel discriminant analyses. In: Proceedings of the 3rd International Conference on Information and Communication Technologies: From Theory to Applications. Damascus, Syria: IEEE, 2008. 1−5
    [14] Sohn J, Kim N S, Sung W. A statistical model-based voice activity detection. IEEE Signal Processing Letters, 1999, 6(1): 1-3 doi: 10.1109/97.736233
    [15] Chang J H, Kim N S. Voice activity detection based on complex Laplacian model. Electronics Letters, 2003, 39(7): 632-634 doi: 10.1049/el:20030392
    [16] Ramirez J, Segura J C, Benitez C, Garcia L, Rubio A. Statistical voice activity detection using a multiple observation likelihood ratio test. IEEE Signal Processing Letters, 2005, 12(10): 689-692 doi: 10.1109/LSP.2005.855551
    [17] Tong S B, Gu H, Yu K. A comparative study of robustness of deep learning approaches for VAD. In: Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China: IEEE, 2016. 5695−5699
    [18] Atal B S. Automatic recognition of speakers from their voices. Proceedings of the IEEE, 1976, 64(4): 460-475 doi: 10.1109/PROC.1976.10155
    [19] Davis S, Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1980, 28(4): 357-366 doi: 10.1109/TASSP.1980.1163420
    [20] Hermansky H. Perceptual linear predictive (PLP) analysis of speech. Journal of the Acoustical Society of America, 1990, 87(4): 1738-1752 doi: 10.1121/1.399423
    [21] Koenig W, Dunn H K, Lacy L Y. The sound spectrograph. The Journal of the Acoustical Society of America, 1946, 18(1): 19-49 doi: 10.1121/1.1916342
    [22] LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541−551
    [23] 林景栋, 吴欣怡, 柴毅, 尹宏鹏. 卷积神经网络结构优化综述. 自动化学报, 2020, 46(1): 24-37

    Lin Jing-Dong, Wu Xin-Yi, Chai Yi, Yin Hong-Peng. Structure optimization of convolutional neural networks: A survey. Acta Automatica Sinica, 2020, 46(1): 24-37
    [24] Furui S. Cepstral analysis technique for automatic speaker verification. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(2): 254-272 doi: 10.1109/TASSP.1981.1163530
    [25] Pelecanos J W, Sridharan S. Feature warping for robust speaker verification. In: Proceedings of the 2001 A Speaker Odyssey: The Speaker Recognition Workshop. Crete, Greece: ISCA, 2001. 1−5
    [26] Sadjadi S O, Slaney M, Heck A L. MSR Identity Toolbox v1.0: A MATLAB Toolbox for Speaker Recognition Research, Microsoft Research Technical Report MSR-TR-2013-133, 2013.
    [27] Campbell W M, Sturim D E, Reynolds D A. Support vector machines using GMM supervectors for speaker verification. IEEE Signal Processing Letters, 2006, 13(5): 308-311 doi: 10.1109/LSP.2006.870086
    [28] Reynolds D A. Speaker identification and verification using Gaussian mixture speaker models. Speech Communication, 1995, 17(1−2): 91-108 doi: 10.1016/0167-6393(95)00009-D
    [29] Reynolds D A, Quatieri T F, Dunn R B. Speaker verification using adapted Gaussian mixture models. Digital Signal Processing, 2000, 10(1−3): 19-41 doi: 10.1006/dspr.1999.0361
    [30] Wang W, Han J, Zheng T, Zheng G, Liu H. A robust sparse auditory feature for speaker verification. Journal of Computational Information Systems, 2013, 9(22): 8987-8993
    [31] Wang W, Han J Q, Zheng T R, Zheng G B. Robust speaker verification based on max pooling of sparse representation. Journal of Computers, 2014, 24(4): 56-65
    [32] He Y J, Chen C, Han J Q. Noise-robust speaker recognition based on morphological component analysis. In: Proceedings of the 16th Annual Conference of the International Speech Communication Association. Dresden, Germany: ISCA, 2015. 3001−3005
    [33] Wang W, Han J Q, Zheng T R, Zheng G B, Zhou X Y. Speaker verification via modeling kurtosis using sparse coding. International Journal of Pattern Recognition and Artificial Intelligence, 2016, 30(3): Article No. 1659008 doi: 10.1142/S0218001416590084
    [34] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 1977, 39(1): 1-22
    [35] Gauvain J L, Lee C H. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains. IEEE Transactions on Speech and Audio Processing, 1994, 2(2): 291-298 doi: 10.1109/89.279278
    [36] Kuhn R, Junqua J C, Nguyen P, Niedzielski N. Rapid speaker adaptation in eigenvoice space. IEEE Transactions on Speech and Audio Processing, 2000, 8(6): 695-707 doi: 10.1109/89.876308
    [37] Kenny P, Mihoubi M, Dumouchel P. New MAP estimators for speaker recognition. In: Proceedings of the 8th European Conference on Speech Communication and Technology (EUROSPEECH). Geneva, Switzerland: ISCA, 2003. 2961−2964
    [38] Kenny P, Boulianne G, Ouellet P, Dumouchel P. Joint factor analysis versus eigenchannels in speaker recognition. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(4): 1435-1447 doi: 10.1109/TASL.2006.881693
    [39] Dehak N, Dehak R, Kenny P, Brümmer N, Dumouchel P. Support vector machines versus fast scoring in the low-dimensional total variability space for speaker verification. In: Proceedings of the 10th Annual Conference of the International Speech Communication Association (INTERSPEECH). Brighton, UK: ISCA, 2009. 1559−1562
    [40] Dehak N, Kenny P J, Dehak R, Dumouchel P, Ouellet P. Front-end factor analysis for speaker verification. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(4): 788-798 doi: 10.1109/TASL.2010.2064307
    [41] Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1−3): 37-52 doi: 10.1016/0169-7439(87)80084-9
    [42] Lei Z C, Yang Y C. Maximum likelihood I-vector space using PCA for speaker verification. In: Proceedings of the 12th Annual Conference of the International Speech Communication Association (INTERSPEECH). Florence, Italy: ISCA, 2011. 2725−2728
    [43] Tipping M E, Bishop C M. Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B Statistical Methodology), 1999, 61(3): 611-622 doi: 10.1111/1467-9868.00196
    [44] Vestman V, Kinnunen T. Supervector compression strategies to speed up I-vector system development. In: Proceedings of the 2018 Odyssey: The Speaker and Language Recognition Workshop. Les Sables d' Olonne, France: ISCA, 2018. 357−364
    [45] Gorsuch R L. Factor Analysis (2nd edition). Hillsdale: Lawrence Erlbaum Associates, 1983.
    [46] Roweis S T. EM algorithms for PCA and SPCA. In: Proceedings of the 10th International Conference on Neural Information Processing Systems. Denver, USA: MIT Press, 1997. 626−632
    [47] Chen L P, Lee K A, Ma B, Guo W, Li H Z, Dai L R. Local variability vector for text-independent speaker verification. In: Proceedings of the 9th International Symposium on Chinese Spoken Language Processing. Singapore, Singapore: IEEE, 2014. 54−58
    [48] Xu L T, Lee K A, Li H Z, Yang Z. Sparse coding of total variability matrix. In: Proceedings of the 16th Annual Conference of the International Speech Communication Association (INTERSPEECH). Dresden, Germany: ISCA, 2015. 1022−1026
    [49] Ma J B, Sethu V, Ambikairajah E, Lee K A. Generalized variability model for speaker verification. IEEE Signal Processing Letters, 2018, 25(12): 1775-1779 doi: 10.1109/LSP.2018.2874814
    [50] Shepstone S E, Lee K A, Li H Z, Tan Z H, Jensen S H. Total variability modeling using source-specific priors. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(3): 504-517 doi: 10.1109/TASLP.2016.2515506
    [51] Ribas D, Vincent E. An improved uncertainty propagation method for robust I-vector based speaker recognition. In: Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK: IEEE, 2019. 6331−6335
    [52] Xu L T, Lee K A, Li H Z, Yang Z. Generalizing I-vector estimation for rapid speaker recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(4): 749-759 doi: 10.1109/TASLP.2018.2793670
    [53] Travadi R, Narayanan S. Efficient estimation and model generalization for the totalvariability model. Computer Speech and Language, 2019, 53: 43-64
    [54] Chen C, Han J Q. Partial least squares based total variability space modeling for I-vector speaker verification. Chinese Journal of Electronics. 2018, 27(6): 1229-1233 doi: 10.1049/cje.2018.06.001
    [55] Chen C, Han J Q, Pan Y L. Speaker verification via estimating total variability space using probabilistic partial least squares. In: Proceedings of the 18th Annual Conference of the International Speech Communication Association. Stockholm, Swedish: ISCA, 2017. 1537−1541
    [56] Lei Y, Hansen J H L. Speaker recognition using supervised probabilistic principal component analysis. In: Proceedings of the 11th Annual Conference of the International Speech Communication Association (INTERSPEECH). Makuhari, Japan: ISCA, 2010. 382−385
    [57] Huber J. A robust version of the probability ratio test. Annals of Mathematical Statistics, 1965, 36(6): 1753-1758 doi: 10.1214/aoms/1177699803
    [58] Hautamäki V, Cheng Y C, Rajan P, Lee C H. Minimax i-vector extractor for short duration speaker verification. In: Proceedings of the 14th Annual Conference of the International Speech Communication Association (INTERSPEECH). Lyon, France: ISCA, 2013. 3708−3712
    [59] Vogt R, Baker B, Sridharan S. Modelling session variability in text-independent speaker verification. In: Proceedings of the 9th European Conference on Speech Communication and Technology (INTERSPEECH). Lisbon, Portugal: ISCA, 2005. 3117−3120
    [60] Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936, 7(2): 179-188 doi: 10.1111/j.1469-1809.1936.tb02137.x
    [61] Hatch A O, Kajarekar S S, Stolcke A. Within-class covariance normalization for SVM-based speaker recognition. In: Proceedings of the 9th International Conference on Spoken Language Processing (INTERSPEECH). Pittsburgh, USA: ISCA, 2006. 1471−1474
    [62] Campbell W M, Sturim D E, Reynolds D A, Solomonoff A. SVM based speaker verification using a GMM supervector kernel and NAP variability compensation. In: Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal Processing. Toulouse, France: IEEE, 2006.
    [63] Sadjadi S O, Pelecanos J W, Zhu W Z. Nearest neighbor discriminant analysis for robust speaker recognition. In: Proceedings of the 15th Annual Conference of the International Speech Communication Association (INTERSPEECH). Singapore, Singapore: ISCA, 2014. 1860−1864
    [64] Misra A, Ranjan S, Hansen J H L. Locally weighted linear discriminant analysis for robust speaker verification. In: Proceedings of the 18th Annual Conference of the International Speech Communication Association. Stockholm, Sweden: ISCA, 2017. 2864−2868
    [65] Misra A, Hansen J H L. Modelling and compensation for language mismatch in speaker verification. Speech Communication, 2018, 96: 58-66 doi: 10.1016/j.specom.2017.09.004
    [66] Li M, Zhang X, Yan Y H, Narayanan S S. Speaker verification using sparse representations on total variability I-vectors. In: Proceedings of the 12th Annual Conference of the International Speech Communication Association (INTERSPEECH). Florence, Italy: ISCA, 2011. 2729−2732
    [67] Wang W, Han J Q, Zheng T R, Zheng G B, Shao M G. Speaker recognition via block sparse Bayesian learning. International Journal of Multimedia and Ubiquitous Engineering, 2015, 10(7): 247-254 doi: 10.14257/ijmue.2015.10.7.26
    [68] 王伟, 韩纪庆, 郑铁然, 郑贵滨, 陶耀. 基于Fisher判别字典学习的说话人识别. 电子与信息学报, 2016, 38(2): 367-372

    Wang Wei, Han Ji-Qing, Zheng Tie-Ran, Zheng Gui-Bin, Tao Yao. Speaker recognition based on Fisher discrimination dictionary learning. Journal of Electronics and Information Technology, 2016, 38(2): 367-372
    [69] Variani E, Lei X, McDermott E, Moreno I L, Gonzalez-Dominguez J. Deep neural networks for small footprint text-dependent speaker verification. In: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy: IEEE, 2014. 4052−4056
    [70] Snyder D, Garcia-Romero D, Povey D, Khudanpur S. Deep neural network embeddings for text-independent speaker verification. In: Proceedings of the 18th Annual Conference of the International Speech Communication Association. Stockholm, Sweden: ISCA, 2017. 999−1003
    [71] Snyder D, Garcia-Romero D, Sell G, Povey D, Khudanpur S. X-Vectors: Robust DNN embeddings for speaker recognition. In: Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary, Canada: IEEE, 2018. 5329−5333
    [72] Chatfield K, Simonyan K, Vedaldi A, Zisserman A. Return of the devil in the details: Delving deep into convolutional nets. In: Proceedings of the 2014 British Machine Vision Conference (BMVC). Nottingham, UK: BMVA Press, 2014: 1−5
    [73] Nagrani A, Chung J S, Zisserman A. VoxCeleb: A large-scale speaker identification dataset. In: Proceedings of the 18the Annual Conference of the International Speech Communication Association. Stockholm, Sweden: ISCA, 2017. 2616−2620
    [74] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 770−778
    [75] Chung J S, Nagrani A, Zisserman A. VoxCeleb2: Deep speaker recognition. In: Proceedings of the 19th Annual Conference of the International Speech Communication Association. Hyderabad, India: ISCA, 2018. 1086−1090
    [76] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014. 2672−2680
    [77] Zhang Z F, Wang L B, Kai A, Yamada T, Li W F, Iwahashi M. Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification. Eurasip Journal on Audio, Speech, and Music Processing, 2015, 2015(1): Article No. 12 doi: 10.1186/s13636-015-0056-7
    [78] Richardson F, Reynolds D, Dehak N. Deep neural network approaches to speaker and language recognition. IEEE Signal Processing Letters, 2015, 22(10): 1671-1675 doi: 10.1109/LSP.2015.2420092
    [79] Chen Y H, Lopez-Moreno I, Sainath T N, Visontai M, Alvarez R, Parada C. Locally-connected and convolutional neural networks for small footprint speaker recognition. In: Proceedings of the 16th Annual Conference of the International Speech Communication Association (INTERSPEECH). Dresden, Germany: ISCA, 2015. 1136−1140
    [80] Li L T, Chen Y X, Shi Y, Tang Z Y, Wang D. Deep speaker feature learning for text-independent speaker verification. In: Proceedings of the 18th Annual Conference of the International Speech Communication Association. Stockholm, Sweden: ISCA, 2017. 1542−1546
    [81] Prince S J D, Elder J H. Probabilistic linear discriminant analysis for inferences about identity. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1−8
    [82] Peddinti V, Povey D, Khudanpur S. A time delay neural network architecture for efficient modeling of long temporal contexts. In: Proceedings of the 16th Annual Conference of the International Speech Communication Association (INTERSPEECH). Dresden, Germany: ISCA, 2015. 3214−3218
    [83] Villalba J, Chen N X, Snyder D, Garcia-Romero D, McCree A, Sell G, et al. State-of-the-art speaker recognition for telephone and video speech: The JHU-MIT submission for NIST SRE18. In: Proceedings of the 20th Annual Conference of the International Speech Communication Association. Graz, Austria: ISCA, 2019. 1488−1492
    [84] Povey D, Cheng G F, Wang Y M, Li K, Xu H N, Yarmohammadi M, et al. Semi-orthogonal low-rank matrix factorization for deep neural networks. In: Proceedings of the 19th Annual Conference of the International Speech Communication Association. Hyderabad, India: ISCA, 2018. 3743−3747
    [85] Snyder D, Garcia-Romero D, Sell G, McCree A, Povey D, Khudanpur S. Speaker recognition for multi-speaker conversations using X-vectors. In: Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK: IEEE, 2019. 5796−5800
    [86] Kanagasundaram A, Sridharan S, Ganapathy S, Singh P, Fookes C. A study of X-vector based speaker recognition on short utterances. In: Proceedings of the 20th Annual Conference of the International Speech Communication Association. Graz, Austria: ISCA, 2019. 2943−2947
    [87] Garcia-Romero D, Snyder D, Sell G, McCree A, Povey D, Khudanpur S. X-vector DNN refinement with full-length recordings for speaker recognition. In: Proceedings of the 20th Annual Conference of the International Speech Communication Association. Graz, Austria: ISCA, 2019. 1493−1496
    [88] Hong Q B, Wu C H, Wang H M, Huang C L. Statistics pooling time delay neural network based on X-vector for speaker verification. In: Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE, 2020. 6849−6853
    [89] Nagrani A, Chung J S, Xie W D, Zisserman A. Voxceleb: Large-scale speaker verification in the wild. Computer Science and Language, 2020, 60: Article No. 101027
    [90] Hajibabaei M, Dai D X. Unified hypersphere embedding for speaker recognition. arXiv preprint arXiv: 1807.08312, 2018.
    [91] Xie W D, Nagrani A, Chung J S, Zisserman A. Utterance-level aggregation for speaker recognition in the wild. In: Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK: IEEE, 2019. 5791−5795
    [92] Zhang C L, Koishida K. End-to-end text-independent speaker verification with triplet loss on short utterances. In: Proceedings of the 18th Annual Conference of the International Speech Communication Association. Stockholm, Sweden: ISCA, 2017. 1487−1491
    [93] Cai W C, Chen J K, Li M. Exploring the encoding layer and loss function in end-to-end speaker and language recognition system. In: Proceedings of the 2018 Odyssey: The Speaker and Language Recognition Workshop. Les Sables d'Olonne, France: ISCA, 2018. 74−81
    [94] Li C, Ma X K, Jiang B, Li X G, Zhang X W, Liu X, Cao Y, Kannan A, Zhu Z Y. Deep speaker: An end-to-end neural speaker embedding system. arXiv preprint arXiv:1705.02304, 2017.
    [95] Ding W H, He L. MTGAN: Speaker verification through multitasking triplet generative adversarial networks. In: Proceedings of the 19th Annual Conference of the International Speech Communication Association. Hyderabad, India: ISCA, 2018. 3633−3637
    [96] Zhou J F, Jiang T, Li L, Hong Q Y, Wang Z, Xia B Y. Training multi-task adversarial network for extracting noise-robust speaker embeddings. In: Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK: IEEE, 2019. 6196−6200
    [97] Yang Y X, Wang S, Sun M, Qian Y M, Yu K. Generative adversarial networks based X-vector augmentation for robust probabilistic linear discriminant analysis in speaker verification. In: Proceedings of the 11th International Symposium on Chinese Spoken Language Processing (ISCSLP). Taipei, China: IEEE, 2018. 205−209
    [98] Li N, Tuo D Y, Su D, Li Z F, Yu D. Deep discriminative embeddings for duration robust speaker verification. In: Proceedings of the 19th Annual Conference of the International Speech Communication Association. Hyderabad, India: ISCA, 2018. 2262−2266
    [99] Liu Y, He L, Liu J. Large margin softmax loss for speaker verification. In: Proceedings of the 20th Annual Conference of the International Speech Communication Association. Graz, Austria: ISCA, 2019. 2873−2877
    [100] Huang Z L, Wang S, Yu K. Angular softmax for short-duration text-independent speaker verification. In: Proceedings of the 19th Annual Conference of the International Speech Communication Association. Hyderabad, India: ISCA, 2018. 3623−3627
    [101] Yu Y Q, Fan L, Li W J. Ensemble additive margin softmax for speaker verification. In: Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK: IEEE, 2019. 6046−6050
    [102] Bhattacharya G, Alam J, Gupta V, Kenny P. Deeply fused speaker embeddings for text-independent speaker verification. In: Proceedings of the 19th Annual Conference of the International Speech Communication Association. Hyderabad, India: ISCA, 2018. 3588−3592
    [103] Zhang C L, Koishida K, Hansen J H L. Text-independent speaker verification based on triplet convolutional neural network embeddings. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(9): 1633-1644 doi: 10.1109/TASLP.2018.2831456
    [104] Zheng T R, Han J Q, Zheng G B. Deep neural network based discriminative training for I-vector/PLDA speaker verification. In: Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary, Canada: IEEE, 2018. 5354−5358
    [105] Chen C, Wang W, He Y J, Han J Q. A bilevel framework for joint optimization of session compensation and classification for speaker identification. Digital Signal Processing, 2019, 89: 104-115 doi: 10.1016/j.dsp.2019.03.008
    [106] Chen C, Han J Q. Task-driven variability model for speaker verification. Circuits, Systems, and Signal Processing, 2020, 39(6): 3125-3144 doi: 10.1007/s00034-019-01315-7
    [107] Rohdin J, Silnova A, Diez M, Plchot O, Matějka P, Burget L. End-to-end DNN based speaker recognition inspired by I-vector and PLDA. In: Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary, Canada: IEEE, 2018. 4874−4878
    [108] Chen C, Han J Q. TDMF: Task-driven multilevel framework for end-to-end speaker verification. In: Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE, 2020. 6809−6813
    [109] Migdalas A, Pardalos P M, Varbränd P. Multilevel Optimization: Algorithms and Applications. Boston: Springer Science and Business Media, 2013.
    [110] Kenny P. Bayesian speaker verification with heavy-tailed priors. In: Proceedings of the 2010 Odyssey: The Speaker and Language Recognition Workshop. Brno, Czech Republic: ISCA, 2010. 1−4
    [111] Garcia-Romero D, Espy-Wilson C Y. Analysis of I-vector length normalization in speaker recognition systems. In: Proceedings of the 12th Annual Conference of the International Speech Communication Association (INTERSPEECH). Florence, Italy: ISCA, 2011. 249−252
    [112] Pan Y L, Zheng T R, Chen C. I-vector Kullback-Leibler divisive normalization for PLDA speaker verification. In: Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Montreal, Canada: IEEE, 2017. 56−60
    [113] Burget L, Plchot O, Cumani S, Glembek O, Matějka P, Brümmer N. Discriminatively trained probabilistic linear discriminant analysis for speaker verification. In: Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic: IEEE, 2011. 4832−4835
    [114] Cumani S, Laface P. Joint estimation of PLDA and nonlinear transformations of speaker vectors. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(10): 1890-1900 doi: 10.1109/TASLP.2017.2724198
    [115] Cumani S, Laface P. Scoring heterogeneous speaker vectors using nonlinear transformations and tied PLDA models. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(5): 995-1009 doi: 10.1109/TASLP.2018.2806305
    [116] Kenny P, Stafylakis T, Ouellet P, Alam J, Dumouchel P. PLDA for speaker verification with utterances of arbitrary duration. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013. 7649−7653
    [117] Ma J B, Sethu V, Ambikairajah E, Lee K A. Twin model G-PLDA for duration mismatch compensation in text-independent speaker verification. In: Proceedings of the 17th Annual Conference of the International Speech Communication Association. San Francisco, USA: ISCA, 2016. 1853−1857
    [118] Ma J B, Sethu V, Ambikairajah E, Lee K A. Duration compensation of I-vectors for short duration speaker verification. Electronics Letters, 2017, 53(6): 405-407 doi: 10.1049/el.2016.4629
    [119] Villalba J, Lleida E. Handling I-vectors from different recording conditions using multi-channel simplified PLDA in speaker recognition. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013. 6763−6767
    [120] Garcia-Romero D, McCree A. Supervised domain adaptation for I-vector based speaker recognition. In: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy: IEEE, 2014. 4047−4051
    [121] Richardson F, Nemsick B, Reynolds D. Channel compensation for speaker recognition using MAP adapted PLDA and denoising DNNs. In: Proceedings of the 2016 Odyssey: The Speaker and Language Recognition Workshop. Bilbao, Spain: ISCA, 2016. 225−230
    [122] Hong Q Y, Li L, Zhang J, Wan L H, Guo H Y. Transfer learning for PLDA-based speaker verification. Speech Communication, 2017, 92: 90-99 doi: 10.1016/j.specom.2017.05.004
    [123] Li N, Mak M W. SNR-invariant PLDA modeling in nonparametric subspace for robust speaker verification. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(10): 1648-1659 doi: 10.1109/TASLP.2015.2442757
    [124] Mak M W, Pang X M, Chien J T. Mixture of PLDA for noise robust I-vector speaker verification. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(1): 130-142 doi: 10.1109/TASLP.2015.2499038
    [125] Villalba J, Miguel A, Ortega A, Lleida E. Bayesian networks to model the variability of speaker verification scores in adverse environments. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(12): 2327-2340 doi: 10.1109/TASLP.2016.2607343
    [126] Fan Y, Kang J W, Li L T, Li K C, Chen H L, Cheng S T, et al. CN-Celeb: A challenging Chinese speaker recognition dataset. In: Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE, 2020. 7604−7608
    [127] McLaren M, Ferrer L, Castán D, Lawson A. The speakers in the wild (SITW) speaker recognition database. In: Proceedings of the 17th Annual Conference of the International Speech Communication Association. San Francisco, USA: ISCA, 2016. 818−822
    [128] Morrison G S, Zhang C, Enzinger E, Ochoa F, Bleach D, Johnson M, et al. Forensic database of voice recordings of 500+ Australian English speakers [Online], available: http://databases.forensic-voice-comparison.net/, November 10, 2020
    [129] Greenberg C S. The NIST Year 2012 Speaker Recognition Evaluation plan, Technical Report NIST_SRE12_evalplan.v17, 2012.
    [130] Feng L, Hansen L K. A New Database for Speaker Recognition, IMM-Technical Report, 2005.
    [131] Godfrey J J, Holliman E C, McDaniel J. SWITCHBOARD: Telephone speech corpus for research and development. In: Proceedings of the 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. San Francisco, USA: IEEE, 1992. 517−520
    [132] Jankowski C, Kalyanswamy A, Basson S, Spitz J. TIMIT: A phonetically balanced, continuous speech, telephone bandwidth speech database. In: Proceedings of the 1990 IEEE International Conference on Acoustics, Speech, and Signal Processing. Albuquerque, USA: IEEE, 1990. 109−122
    [133] 王金甲, 纪绍男, 崔琳, 夏静, 杨倩. 基于注意力胶囊网络的家庭活动识别. 自动化学报, 2019, 45(11): 2199-2204

    Wang Jin-Jia, Ji Shao-Nan, Cui Lin, Xia Jing, Yang Qian. Domestic activity recognition based on attention capsule network. Acta Automatica Sinica, 2019, 45(11): 2199-2204
    [134] Wang H J, Dinkel H, Wang S, Qian Y M, Yu K. Dual-adversarial domain adaptation for generalized replay attack detection. In: Proceedings of the 21st Annual Conference of the International Speech Communication Association. Shanghai, China: ISCA, 2020. 1086−1090
    [135] 黄雅婷, 石晶, 许家铭, 徐波. 鸡尾酒会问题与相关听觉模型的研究现状与展望. 自动化学报, 2019, 45(2): 234-251

    Huang Ya-Ting, Shi Jing, Xu Jia-Ming, Xu Bo. Research advances and perspectives on the cocktail party problem and related auditory models. Acta Automatica Sinica, 2019, 45(2): 234-251
    [136] Lin Q J, Hou Y, Li M. Self-attentive similarity measurement strategies in speaker diarization. In: Proceedings of the 21st Annual Conference of the International Speech Communication Association. Shanghai, China: ISCA, 2020. 284−288
  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  1587
  • HTML全文浏览量:  695
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 修回日期:  2020-09-03
  • 网络出版日期:  2020-12-10
  • 刊出日期:  2022-03-25

目录

    /

    返回文章
    返回