2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

知识堆叠降噪自编码器

刘国梁 余建波

刘国梁, 余建波. 知识堆叠降噪自编码器. 自动化学报, 2022, 48(3): 774−786 doi: 10.16383/j.aas.c190375
引用本文: 刘国梁, 余建波. 知识堆叠降噪自编码器. 自动化学报, 2022, 48(3): 774−786 doi: 10.16383/j.aas.c190375
Liu Guo-Liang, Yu Jian-Bo. Knowledge-based stacked denoising autoencoder. Acta Automatica Sinica, 2022, 48(3): 774−786 doi: 10.16383/j.aas.c190375
Citation: Liu Guo-Liang, Yu Jian-Bo. Knowledge-based stacked denoising autoencoder. Acta Automatica Sinica, 2022, 48(3): 774−786 doi: 10.16383/j.aas.c190375

知识堆叠降噪自编码器

doi: 10.16383/j.aas.c190375
基金项目: 国家自然科学基金(71771173)资助
详细信息
    作者简介:

    刘国梁:同济大学机械与能源工程学院硕士研究生. 2018年获上海大学机械工程及其自动化学院学士学位. 主要研究方向为机器学习, 深度学习, 智能质量管控.E-mail: guoliangliutt@163.com

    余建波:同济大学机械与能源工程学院教授. 2009年获上海交通大学机械工程学院博士学位. 主要研究方向为机器学习, 深度学习, 智能质量管控, 过程控制, 视觉检测与识别. 本文通信作者.E-mail: jbyu@tongji.edu.cn

Knowledge-based Stacked Denoising Autoencoder

Funds: Supported by National Natural Science Fundation of China (71771173)
More Information
    Author Bio:

    LIU Guo-Liang Master student at the School of Mechanical and Energy Engineering, Tongji University. He received his bachelor degree from Shanghai University in 2018. His research interest covers machine learning and intelligent quality control

    YU Jian-Bo Professor at the School of Mechanical and Energy Engineering, Tongji University. He received his Ph.D. degree from Shanghai Jiao Tong University. His research interest covers machine learning, deep learning, intelligent quality control, process control, and visual inspection and identification. Corresponding author of this paper

  • 摘要: 深度神经网络是具有复杂结构和多个非线性处理单元的模型, 广泛应用于计算机视觉、自然语言处理等领域. 但是, 深度神经网络存在不可解释这一致命缺陷, 即“黑箱问题”, 这使得深度学习在各个领域的应用仍然存在巨大的障碍. 本文提出了一种新的深度神经网络模型 —— 知识堆叠降噪自编码器(Knowledge-based stacked denoising autoencoder, KBSDAE). 尝试以一种逻辑语言的方式有效解释网络结构及内在运作机理, 同时确保逻辑规则可以进行深度推导. 进一步通过插入提取的规则到深度网络, 使KBSDAE不仅能自适应地构建深度网络模型并具有可解释和可视化特性, 而且有效地提高了模式识别性能. 大量的实验结果表明, 提取的规则不仅能够有效地表示深度网络, 还能够初始化网络结构以提高KBSDAE的特征学习性能、模型可解释性与可视化, 可应用性更强.
  • 图  1  堆叠降噪自编码器工作原理示意图

    Fig.  1  Stacked denoising auroencoder working principle diagram

    图  2  KBSDAE模型结构图

    Fig.  2  KBSDAE model structure diagram

    图  3  KBSDAE的Fine-tuning阶段示意图

    Fig.  3  Fine-tuning diagram of KBSDAE

    图  4  分类规则初始化网络算法示意图

    Fig.  4  Classification rule initialize network algorithm diagram

    图  5  SDAE和对应混合规则DNA promoter的识别率对比(%)

    Fig.  5  Comparison of DNA promoter recognition rate between SDAE and corresponding blending rules (%)

    图  6  KBSDAE和SDAE在HAR数据集上训练过程的均方误差变化对比

    Fig.  6  Comparison of mean square error of KBSDAE and SDAE training process on HAR dataset

    图  7  不同DNA promoter数据量训练的SDAE与KBSDAE分类性能对比

    Fig.  7  Comparison of classification performance between SDAE and KBSDAE trained by different DNA promoter data

    图  8  不同Fine-tuning训练步数的SDAE与KBSDAE分类性能对比

    Fig.  8  Comparison of SDAE and KBSDAE classification performance of different fine-tuning training steps

    表  1  遗传算法基因编码示意表

    Table  1  Genetic algorithm gene coding schematic

    Gene 1 Gene 2 ··· Gene N
    Act1 DS1 V1 Act2 DS2 V2 ··· ActN DSN VN
    下载: 导出CSV

    表  2  部分DAE符号规则抽取结果

    Table  2  DAE symbol rule extraction result

    隐藏单元 DAE 的置信度符号规则束
    3 $2.2874: {h_2} \leftrightarrow \neg x \wedge y \wedge z $
    $2.9129: {h_3} \leftrightarrow \neg x \wedge \neg y \wedge \neg z$
    10 $1.4163: {h_1} \leftrightarrow \neg x \wedge \neg y \wedge \neg z $
    $2.4803: {h_2} \leftrightarrow \neg x \wedge \neg y \wedge \neg z $
    $1.9159: {h_3} \leftrightarrow x \wedge \neg y \wedge z $
    $1.0435: {h_4} \leftrightarrow \neg x \wedge \neg y \wedge \neg z $
    $0.6770: {h_5} \leftrightarrow \neg x \wedge y \wedge \neg z $
    $1.9298: {h_6} \leftrightarrow x \wedge \neg y \wedge z $
    $1.9785: {h_7} \leftrightarrow x \wedge \neg y \wedge z $
    $1.9448: {h_8} \leftrightarrow \neg x \wedge y \wedge z $
    $2.4405: {h_9} \leftrightarrow x \wedge y \wedge \neg z $
    $ 2.0322: {h_{10}} \leftrightarrow \neg x \wedge y \wedge z $
    下载: 导出CSV

    表  3  复杂数据集降维后SVM 10折交叉分类结果(%)

    Table  3  Ten-fold cross-classification results of dimensionally reduced complex data on SVM (%)

    MNIST HAR
    One DAE (J = 500) 98.00 97.27
    Symbolic rule 94.43 96.73
    Two DAEs (top J = 100) 98.74 98.07
    Symbolic rule 96.03 96.84
    Two DAEs (top J = 200) 98.90 97.74
    Symbolic rule 95.42 97.33
    SVM (linear) 92.35 96.55
    下载: 导出CSV

    表  4  基于DNA promoter 的分类规则明细表(%)

    Table  4  Classification rule schedule based on DNA promoter (%)

    分类规则 可信度 覆盖率
    ${\rm IF}\; (h_2^1 > 0.771 \wedge h_3^1 > 0.867) $
    ${\rm THEN}\;promoter $
    98.62 50.00
    $ {\rm IF} \;(h_1^1 < 0.92 \wedge h_2^1 < 0.634 \wedge h_3^1 < 0.643) $
    $ {\rm THEN}\; \neg promoter $
    84.42 50.00
    下载: 导出CSV

    表  5  基于DNA promote 数据集的部分符号规则明细

    Table  5  Partial symbol rule details based on DNA promote

    节点 置信度 规则片段 1 起始位 终止位 规则片段 2 起始位 终止位 规则片段 3 起始位 终止位
    @-36 @-32 @-12 @-7 @-45 @-41
    ${{h} }_1^1$ 0.76 A C [ ] G T G G T C (T) G C G C T A T (A)
    ${{h} }_2^1$ 1.29 T T G T (A) C T (A) A A A G C A A T A A
    ${{h} }_3^1$ 1.47 G (A) T G T (A) C T (A) T (A) G (A) T C (T) G (A) A A T C A
    基本规则 L1 minus-35: T T G A C minus-10: T A [ ] [ ] [ ] T Conformation: A A [ ] [ ] A
    L2 contact←minus-35∧minus-10
    L3 promoter←contact∧conformation
    下载: 导出CSV

    表  6  UCI数据集信息

    Table  6  UCI dataset information

    数据集 特征数量 类别数 数据量
    Credit card 14 2 690
    Diabetes 8 2 768
    Pima 8 2 759
    Wine 13 3 178
    Cancer 9 2 689
    Vehicle 8 4 846
    Heart 13 2 270
    German 24 2 1 000
    Iris 4 3 150
    下载: 导出CSV

    表  7  UCI数据集信息 (%)

    Table  7  UCI dataset information (%)

    数据集 DBN SDAE INSS-KBANN BPNN Sym-DBN KBSDAE
    Credit card 84.29 84.14 81.17 85.00 85.57 87.18
    Diabetes 73.20 73.47 74.00 72.40 76.53 78.27
    Pima 72.57 70.00 73.73 73.73 74.00 76.40
    Wine 96.67 96.00 97.67 96.00 98.00 97.00
    Cancer 96.92 97.38 97.21 96.31 97.69 97.12
    Vehicle 75.29 73.97 71.82 68.69 74.67 75.85
    Heart 81.60 76.80 78.80 78.40 82.40 84.00
    German 70.90 71.30 71.60 69.40 71.30 79.10
    Iris 84.00 82.00 93.00 92.33 92.33 94.33
    下载: 导出CSV

    表  8  复杂数据集分类结果对比(%)

    Table  8  Classification results of comparison on complex datasets (%)

    数据集及网络参数 数据标签 SDAE KBSDAE
    USPS: 0 98.97 98.38
    SDAE: 256-100-20-10/learning rate: 0.01/noising rate: 0.1
    KBSDAE: 256-100-25-18-10/learning rate: 0.01/noising rate: 0.1
    1 99.13 99.06
    2 96.46 97.28
    3 96.37 95.20
    4 96.33 96.74
    5 94.19 94.53
    6 97.62 97.97
    7 97.49 97.44
    8 94.46 96.61
    9 98.25 97.88
    Mean 97.24 97.33
    HAR
    SDAE: 561-300-20-6/learning rate: 0.01/noising rate: 0.1
    KBSDAE: 561-300-25-11-6/learning rate: 0.01/noising rate: 0.1
    Walking 98.84 100.00
    Walking upstairse 88.17 98.77
    Walking downstairse 92.31 98.49
    Sitting 97.05 98.85
    Standing 89.36 94.99
    Laying 100 100.00
    Mean 94.10 98.50
    下载: 导出CSV

    表  9  复杂数据集5折交叉分类结果对比(%)

    Table  9  Comparison of five-fold cross-classification results on complex datasets (%)

    数据集 KBSDAE Sym-DBN DBN SDAE BPNN SVM
    USPS 97.43 97.47 96.72 97.24 97.22 93.37
    HAR 98.40 97.09 96.89 95.32 95.84 96.55
    下载: 导出CSV
  • [1] Towell G G. Extracting Refined Rules from Knowledge-Based Neural Networks. Machine Learning, 1993, 13(1): 71-101
    [2] Lecun Y, Bengio Y, Hinton G E. Deep learning. Nature, 2015, 521(7553): 436-444 doi: 10.1038/nature14539
    [3] Hinton G E, Osindero S, Teh Y W. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 2006, 18(7): 1527-1554 doi: 10.1162/neco.2006.18.7.1527
    [4] Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In: Proceedings of the 2006 Advances in Neural Information Processing Systems 19, Proceedings of the 20th Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 4−7, 2006. DBLP, 2007.
    [5] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324 doi: 10.1109/5.726791
    [6] Vincent P, Larochelle H, Bengio Y, Manzagol P A. Extract-ing and composing robust features with denoising autoen-coders. In: Proceedings of the 25th International Conferenceon Machine Learning. Helsinki, Finland: ACM, 2008. 1096−1103
    [7] Towell G G, Shavlik J W. Knowledge-based artificial neural networks. Artificial Intelligence, 1994, 70(1-2): 119-165 doi: 10.1016/0004-3702(94)90105-8
    [8] Gallant S I. Connectionist expert systems. Comm Acm, 1988, 31(2): 152-169 doi: 10.1145/42372.42377
    [9] Garcez A D A, Zaverucha G. The Connectionist Inductive Learning and Logic Programming System. Applied Intelligence: The International Journal of Artificial, Intelligence, Neural Networks, and Complex Problem-Solving Technologies, 1999, 11(1): 59-77
    [10] Fernando S. Osório, Amy B. INSS: A hybrid system for constructive machine learning. Neurocomputing, 1999, 28(1-3): 191-205 doi: 10.1016/S0925-2312(98)00124-6
    [11] Setiono R. Extracting rules from neural networks by pruning and hidden-unit splitting. Neural Computation, 2014, 9(1): 205-225
    [12] 杨莉, 袁静, 胡守仁. 神经网络问题求解机制. 计算机学报, 1993, (11): 814-822

    Yang Li, Yuan Jing, Hu Shou-Ren. The problem solving mechanism of neural networks. Chinese J. Compuers, 1993, (11): 814-822
    [13] 黎明, 张化光. 基于粗糙集的神经网络建模方法研究. 自动化学报, 1994, 20(3): 349-351

    Qian Da-Qun, Sun Zheng-Fei. Knowledge Acquisition and Behavioral Explanation on Neural Network. Acta Automatica Sinica, 2002, 28(1): 27-33
    [14] 钱大群, 孙振飞. 神经网络的知识获取与行为解释. 自动化学报, 2002, 28(1): 27-33

    Li Ming, Zhang Hua-Guang. Research on the method of neural network modeling based on rough sets theory. Acta Automatica Sinica, 1994, 20(3): 349-351
    [15] Penning L D, Garcez A S D, Lamb L C, Meyer J J C. A neural-symbolic cognitive agent for online learning and reasoning. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 2011. 1653−1658
    [16] Odense S, Garcez A S D. Extracting M of N rules from restricted Boltzmann machines. In: Proceedings of the 2017 International Conference on Artificial Neural Networks. Springer, Cham, 2017. 120−127
    [17] Tran S N, Garcez A S D. Deep Logic Networks: Inserting and Extracting Knowledge from Deep Belief Networks. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(2): 246-258
    [18] Li S, Xu H R, Lu Z D. Generalize symbolic knowledge with neural rule engine. arXiv preprint arXiv: 1808.10326v1, 2018.
    [19] Garcez A D A, Gori M, Lamb L C, Serafini L. Neural-symbolic computing: An effective methodology for principled integration of machine learning and reasoning. arXiv preprint arXiv: 1905.06088, 2019.
    [20] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323: 533−536
    [21] Pinkas G. Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artificial Intelligence, 1995, 77(2): 203-247 doi: 10.1016/0004-3702(94)00032-V
    [22] Mitchell T M. Machine Learning. McGraw-Hill, 2014.
    [23] Yu J B, Xi L, Zhou X. Deep Logic Networks: Intelligent monitoring and diagnosis of manufacturing processes using an integrated approach of KBANN and GA. Computers in Industry, 2008, 59(5): 489-501 doi: 10.1016/j.compind.2007.12.005
    [24] Tran S N, Garcez A S D. Knowledge extraction from deep belief networks for images. In: Proceedings of the 2013 IJCAI-Workshop Neural-Symbolic Learning and Reasoning, 2013. 1−6
    [25] Towell G G, Shavlik J W. The extraction of refined rules from knowledge-based neural networks. Mach. Learn, 2018, 13(1): 71-101
    [26] Murphy P M, Aha D W. UCI repository of machine learning databases. Depth Information Compute Science, University California, Irvine, CA, 1994.
    [27] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann, 1995. 1137−1143
    [28] Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz J L. Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Proceedings of the 4th International Workshop of Ambient Assited Living, IWAAL 2012, Vitoria-Gasteiz, Spain, 2012. 216−223
  • 加载中
图(8) / 表(9)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  501
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-16
  • 录用日期:  2019-08-22
  • 网络出版日期:  2022-03-04
  • 刊出日期:  2022-03-25

目录

    /

    返回文章
    返回