2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有输入约束和输出噪声的不确定系统级联线性自抗扰控制

高阳 吴文海 王子健

高阳, 吴文海, 王子健. 具有输入约束和输出噪声的不确定系统级联线性自抗扰控制. 自动化学报, 2022, 48(3): 843−852 doi: 10.16383/j.aas.c190305
引用本文: 高阳, 吴文海, 王子健. 具有输入约束和输出噪声的不确定系统级联线性自抗扰控制. 自动化学报, 2022, 48(3): 843−852 doi: 10.16383/j.aas.c190305
Gao Yang, Wu Wen-Hai, Wang Zi-Jian. Cascaded linear active disturbance rejection control for uncertain systems with input constraint and output noise. Acta Automatica Sinica, 2022, 48(3): 843−852 doi: 10.16383/j.aas.c190305
Citation: Gao Yang, Wu Wen-Hai, Wang Zi-Jian. Cascaded linear active disturbance rejection control for uncertain systems with input constraint and output noise. Acta Automatica Sinica, 2022, 48(3): 843−852 doi: 10.16383/j.aas.c190305

具有输入约束和输出噪声的不确定系统级联线性自抗扰控制

doi: 10.16383/j.aas.c190305
基金项目: 国家自然科学基金(51505491, 60674090)资助
详细信息
    作者简介:

    高阳:海军航空大学青岛校区博士研究生. 2015年获空军勤务学院硕士学位. 主要研究方向为固定翼飞机飞行控制, 自抗扰控制理论与应用. 本文通信作者.E-mail: gy_hkdx@126.com

    吴文海:海军航空大学青岛校区教授. 2004年获南京航空航天大学博士学位. 主要研究方向为综合飞行控制系统, 舰载机着舰引导控制, 现代战机攻击导引控制.E-mail: sophia_wxc@126.com

    王子健:海军航空大学青岛校区讲师. 2012年获海军航空大学硕士学位. 主要研究方向为飞行控制与测试.E-mail: hkdx_2017@126.com

Cascaded Linear Active Disturbance Rejection Control for Uncertain Systems With Input Constraint and Output Noise

Funds: Supperted by National Natural Science Foundation of China (51505491, 60674090)
More Information
    Author Bio:

    GAO Yang Ph.D. candidate at Qingdao Branch, Naval Aviation University. He received his master degree from Air Force Logistics College in 2015. His research interest covers fixed-wing aircraft flight control, active disturbance rejection control theory and its application. Corresponding author of this paper

    WU Wen-Hai Professor at Qingdao Branch, Naval Aviation University. He received his Ph.D. degree from Nanjing University of Aeronautics and Astronautics in 2004. His research interest covers integrated flight control system, carrier landing guidance control of carrier-based aircraft, and attack guidance control of modern fighter

    WANG Zi-Jian Lecturer at Qingdao Branch, Naval Aviation University. He received his master degree from Naval Aviation University in 2012. His research interest covers flight control and test

  • 摘要: 针对一类具有输入约束和输出噪声的SISO (Single input single output)不确定非线性系统, 提出了一种基于误差补偿和工程滤波的抗饱和级联线性自抗扰控制(Linear active disturbance rejection control, LADRC)方法. 首先针对高频量测噪声, 分析了线性扩张状态观测器(Linear extended state observer, LESO)对噪声的放大机理及其与观测器增益的定量关系, 进而设计了一种基于工程滤波器的级联LADRC方法, 在滤除噪声的同时有效补偿了因滤波所造成的输出幅值和相位损失, 确保了闭环系统的跟踪精度. 然后继续考虑输入饱和的问题, 利用LADRC的实时估计/补偿能力, 通过将饱和差值信号引入LESO, 设计了一种基于误差补偿的抗饱和LADRC方法, 有效减小了系统设计控制量, 避免了系统长时间陷入饱和. 通过实时仿真比较, 验证了所提出方法的有效性.
  • 图  1  忽略量测噪声时的闭环系统响应

    Fig.  1  Closed-loop system responses ignoring measurement noise

    图  2  考虑量测噪声时的闭环系统响应

    Fig.  2  Closed-loop system responses considering measurement noise

    图  3  不同r值对系统控制性能的影响

    Fig.  3  Effect on system control performance with different values of r

    图  4  加入滤波器对系统控制性能的影响

    Fig.  4  Effect on system control performance adding filter

    图  5  基于LADRC的级联控制系统结构

    Fig.  5  Structure of cascade control system based on LADRC

    图  6  基于CLADRC的闭环系统响应

    Fig.  6  Closed-loop system responses based on CLADRC

    图  7  输入饱和约束下的CLADRC闭环系统响应

    Fig.  7  Closed-loop system responses with input saturation based on CLADRC

    图  8  基于抗饱和CLADRC的闭环系统响应

    Fig.  8  Closed-loop system responses based on anti-saturation CLADRC

  • [1] Gao Z Q. On the centrality of disturbance rejection in automatic control. ISA Transactions, 2014, 53(4): 850-857 doi: 10.1016/j.isatra.2013.09.012
    [2] 郭宝珠. 非线性系统的自抗扰控制引论. 数学建模及其应用, 2017, 6(1): 13-22 doi: 10.3969/j.issn.2095-3070.2017.01.003

    Guo Bao-Zhu. An introduction to active disturbance rejection control for nonlinear systems. Mathematical Modeling and Its Applications, 2017, 6(1): 13-22 doi: 10.3969/j.issn.2095-3070.2017.01.003
    [3] Han J Q. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906 doi: 10.1109/TIE.2008.2011621
    [4] 韩京清. 自抗扰控制器及其应用. 控制与决策, 1998, 13(1): 19-23 doi: 10.3321/j.issn:1001-0920.1998.01.005

    Han Jing-Qing. Active disturbance rejection controller and applications. Control and Decision, 1998, 13(1): 19-23 doi: 10.3321/j.issn:1001-0920.1998.01.005
    [5] Guo B Z, Zhao Z L. On convergence of nonlinear active disturbance rejection for SISO systems. In: Proceedings of the 24th Chinese Control and Decision Conference. Taiyuan, China: IEEE, 2012. 3507−3512
    [6] Qi X H, Li J, Xia Y Q, Gao Z Q. On the robust stability of active disturbance rejection control for SISO systems. Circuits, Systems, and Signal Processing, 2017, 36(1): 65-81 doi: 10.1007/s00034-016-0302-y
    [7] Xue W C, Huang Y. Performance analysis of 2-DOF tracking control for a class of nonlinear uncertain systems with discontinuous disturbances. International Journal of Robust Nonlinear Control, 2018, 28(4): 1456-1473 doi: 10.1002/rnc.3972
    [8] Li Z Y, Li X M, Zhou Z Y. Active disturbance rejection controller for loitering unit with parameter uncertainty. In: Proceedings of the 16th International Conference on Control, Automation and Systems. Gyeongju, Korea (South): IEEE, 2016. 140−144
    [9] Long Y, Du Z J, Cong L, Wang W D, Zhang Z M, Dong W. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Transactions, 2017, 67: 389-397 doi: 10.1016/j.isatra.2017.01.006
    [10] 陈增强, 孙明玮, 杨瑞光. 线性自抗扰控制器的稳定性研究. 自动化学报, 2013, 39(5): 574-580

    Chen Zeng-Qiang, Sun Ming-Wei, Yang Rui-Guang. On the stability of linear active disturbance rejection control. Acta Automatica Sinica, 2013, 39(5): 574-580
    [11] Xue W C, Huang Y. Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems. ISA Transactions, 2015, 58: 133-154 doi: 10.1016/j.isatra.2015.05.001
    [12] Xue W C, Huang Y. On performance analysis of ADRC for a class of MIMO lower-triangular nonlinear uncertain systems. ISA Transactions, 2014, 53(4): 955-962 doi: 10.1016/j.isatra.2014.02.002
    [13] 高阳, 吴文海, 高丽. 高阶不确定非线性系统的线性自抗扰控制. 控制与决策, 2020, 35(2): 483−491

    Gao Yang, Wu Wen-Hai, Gao Li. Linear active disturbance rejection control for high-order nonlinear systems with uncertainty. Control and Decision, 2020, 35(2): 483−491
    [14] Li Y M, Tong S C, Li T S. Direct adaptive fuzzy backstepping control of uncertain nonlinear systems in the presence of input saturation. Neural Computing & Applications, 2013, 23(5): 1207-1216
    [15] Molavi A, Jalali A, Naraghi M G. Adaptive fuzzy control of a class of nonaffine nonlinear system with input saturation based on passivity theorem. ISA Transactions, 2017, 69: 202-213 doi: 10.1016/j.isatra.2017.03.020
    [16] Xu B, Huang X Y, Wang D W, Sun F C. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian Journal of Control, 2014, 16(1): 162-174 doi: 10.1002/asjc.679
    [17] 彭秀艳, 贾书丽, 张彪. 一类具有执行器饱和的非线性系统抗饱和方法研究. 自动化学报, 2016, 42(5): 798-804

    Peng Xiu-Yan, Jia Shu-Li, Zhang Biao. An anti-saturation method for a class of nonlinear systems with actuator saturation. Acta Automatica Sinica, 2016, 42(5): 798-804
    [18] 林安辉, 蒋德松, 曾建平. 具有输入饱和的欠驱动船舶编队控制. 自动化学报, 2018, 44(8): 1496-1504

    Lin An-Hui, Jiang De-Song, Zeng Jian-Ping. Underactuated Ship Formation Control With Input Saturation. Acta Automatica Sinica, 2018, 44(8): 1496-1504
    [19] Prasov A A, Khalil H K. A nonlinear high-gain observer for systems with measurement noise in a feedback control framework. IEEE Transactions on Automatic Control, 2013, 58(3): 569-580 doi: 10.1109/TAC.2012.2218063
    [20] Lee J, Choi J, Khalil H K. New implementation of high-gain observers in the presence of measurement noise using stochastic approximation. In: Proceedings of the 2016 European Control Conference. Aalborg, Denmark: IEEE, 2016. 1740−1745
    [21] Teel A R. Further variants of the Astolfi/Marconi high-gain observer. In: Proceedings of the 2016 American Control Conference. Boston, USA: IEEE, 2016. 993−998
    [22] Battilotti S. Robust observer design under measurement noise with gain adaptation and saturated estimates. Automatica, 2017, 81: 75-86 doi: 10.1016/j.automatica.2017.02.008
    [23] Nair R R, Behera L. Robust adaptive gain higher order sliding mode observer based control-constrained nonlinear model predictive control for spacecraft formation flying. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1): 367-381 doi: 10.1109/JAS.2016.7510253
  • 加载中
图(8)
计量
  • 文章访问数:  856
  • HTML全文浏览量:  320
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-17
  • 录用日期:  2019-07-30
  • 网络出版日期:  2022-02-10
  • 刊出日期:  2022-03-25

目录

    /

    返回文章
    返回