2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三层虚拟工作流模型的非线性制造工艺多目标优化算法研究

罗智勇 王静远 谢志强 孙广路 杨旭

罗智勇, 王静远, 谢志强, 孙广路, 杨旭. 三层虚拟工作流模型的非线性制造工艺多目标优化算法研究. 自动化学报, 2022, 48(3): 896−908 doi: 10.16383/j.aas.c190090
引用本文: 罗智勇, 王静远, 谢志强, 孙广路, 杨旭. 三层虚拟工作流模型的非线性制造工艺多目标优化算法研究. 自动化学报, 2022, 48(3): 896−908 doi: 10.16383/j.aas.c190090
Luo Zhi-Yong, Wang Jing-Yuan, Xie Zhi-Qiang, Sun Guang-Lu, Yang Xu. Multi-objective optimization algorithm for non-linear manufacturing process based on three-tier virtual workflow model. Acta Automatica Sinica, 2022, 48(3): 896−908 doi: 10.16383/j.aas.c190090
Citation: Luo Zhi-Yong, Wang Jing-Yuan, Xie Zhi-Qiang, Sun Guang-Lu, Yang Xu. Multi-objective optimization algorithm for non-linear manufacturing process based on three-tier virtual workflow model. Acta Automatica Sinica, 2022, 48(3): 896−908 doi: 10.16383/j.aas.c190090

三层虚拟工作流模型的非线性制造工艺多目标优化算法研究

doi: 10.16383/j.aas.c190090
基金项目: 国家自然科学基金面上项目(61772160), 黑龙江省自然科学基金项目(LH2021F030)资助
详细信息
    作者简介:

    罗智勇:哈尔滨理工大学计算机科学与技术学院教授. 主要研究方向为企业智能计算与调度系统, 数据处理, 网络优化. 本文通信作者. E-mail: luozhiyongemail@sina.com

    王静远:哈尔滨理工大学计算机科学与技术学院硕士研究生. 主要研究方向为企业智能计算与调度系统. E-mail: wangjingyuan_hust@163.com

    谢志强:哈尔滨理工大学计算机科学与技术学院教授. 主要研究方向为企业智能计算与调度系统, 数据处理, 网络优化. E-mail: xiezhiqiang@hrbust.edu.cn

    孙广路:哈尔滨理工大学计算机科学与技术学院教授. 主要研究方向为计算机网络与信息安全, 机器学习与智能信息处理. E-mail: guanglu_sun@163.com

    杨旭:哈尔滨理工大学计算机科学与技术学院硕士研究生. 主要研究方向为企业智能计算与调度系统. E-mail: yangxu_hust@sina.com

Multi-objective Optimization Algorithm for Non-linear Manufacturing Process Based on Three-tier Virtual Workflow Model

Funds: Supported by National Natural Science Foundation of China (61772160) and Natural Science Foundation of Heilongjiang Province (LH2021F030)
More Information
    Author Bio:

    LUO Zhi-Yong Professor at the School of Computer Science and Technology, Harbin University of Science and Technology. His research interest covers intelligent compu-ting and scheduling system, data processing and network optimization. Corresponding author of this paper

    WANG Jing-Yuan Master student at the School of Computer Science and Technology, Harbin University of Science and Technology. His research interest covers intelligent computing and scheduling system

    XIE Zhi-Qiang Professor at the School of Computer Science and Technology, Harbin University of Science and Technology. His research interest covers intelligent computing and scheduling system, data processing, and network optimization

    SUN Guang-Lu Professor at the School of Computer Science and Technology, Harbin University of Science and Technology. His research interest covers computer network and information security, machine learning, and intelligent information processing

    YANG Xu Master student at the School of Computer Science and Technology, Harbin University of Science and Technology. His research interest covers intelligent computing and scheduling system

  • 摘要: 时间、生产质量和成本是加工制造中相互制约的重要参数, 平衡此参数使制造工艺最优是一个NP (Non-deterministic polynomial)难题, 对此出现了许多优秀的调度方法. 然而这些方法的优化对象均为线性工艺, 对于普遍存在的非线性工艺却无法调度优化. 针对此不足, 本文以非线性工艺为优化对象提出了三层虚拟工作流模型Three-VMG (Three-virtual model graph)及其优化算法Three-OVMG (Three-optimal virtual model graph). 该模型和算法首先建立非线性工作流, 采用虚拟技术寻找虚拟结点进行重构, 将其改造为虚拟线性工作流; 其次结合工艺特点对模型进行分段, 采用逆向分层串归约来实现段内最优解, 采用累积最优解来衔接各段间的值; 最后根据优化结果自顶向下完成各层资源的优化调度. 实验表明, 该过程较传统时间最小化优化调度算法具有显著的优化效果, 其性能及可操作性也能满足工程要求.
  • 图  1  虚拟歧途径的识别过程

    Fig.  1  The process of virtual wrong route recognition

    图  2  汽车制造冲压加工工艺

    Fig.  2  Stamping process of automobile manufacturing

    图  3  冲压工艺质量检测三层虚拟工作流

    Fig.  3  Three-tier virtual workflow for stamping process quality inspection

    图  4  工作流Three-VMG的调度过程

    Fig.  4  Process of workflow Three-VMG

    图  5  虚拟结点重构过程

    Fig.  5  Virtual node reconfiguration process

    图  6  调度途径VRoute输出对比

    Fig.  6  Comparison of scheduling routes Vroute output

    图  7  合同矢量V对性能的影响

    Fig.  7  Effect of contract vector V on Performance

    图  8  工位结点数对性能的影响

    Fig.  8  Effect of workplace node numbers on performance

    表  1  冲压工艺质量检测结点集合PT

    Table  1  Node set P and T of stamping process quality inspection

    结点 含义
    p1 供应商
    p2 采购部
    p3 采购部质检
    p4 冲压加工
    p5 零件抽检部
    p6 精修部
    p7 质检部
    pE 仓库
    t1 备料
    t2 采购就绪
    t3 采购部质检就绪
    t4 待冲压
    t5 抽检质量就绪
    t6 精修就绪
    t7 质检就绪
    tE 待入库
    下载: 导出CSV

    表  2  各部门服务的时间、质量和费用

    Table  2  Time, quality and cost of departmental services

    编号 时间 (天) 质量 (%) 费用 (万元)
    B1 30 95.1 10.5
    B2 25 95.6 11.0
    B3 20 94.2 10.2
    C1 20 95.6 0.5
    C2 18 97.0 0.6
    S1 21 97.6 0.65
    S2 20 96.8 0.63
    D1 20 96.9 0.67
    D2 19 96.7 0.65
    D3 18 96.0 0.66
    t2 15 99.8 0.45
    t4 1 98.8 0.05
    t6 7 99.9 0.2
    tE 1 99.9 0.04
    cp1 95.0
    cp2 97.5
    下载: 导出CSV
  • [1] 谢志强, 张晓欢, 辛宇, 杨静. 考虑后续工序的择时综合调度算法. 自动化学报, 2018, 44(02): 344-362

    Xie Zhi-Qiang, Zhang Xiao-Huan, Xin Yu, Yang Jing. Time-selective integrated scheduling algorithm considering posterior processes. Actaautomatica Sinica, 2018, 44(02): 344-362
    [2] Duro R J, Mogas S L, Oxman N. Flow-based fabrication: an integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects. CAD Computer Aided Design, 2015, 69(12): 143-145
    [3] 丁进良, 杨翠娥, 陈远东, 柴天佑. 复杂工业过程智能优化决策系统的现状与展望. 自动化学报, 2018, 44(11): 1931-1943

    Ding Jin-Liang, Yang Cui-E, Chen Yuan-Dong, Chai Tian-You. Research progress and prospects of intelligent optimization decision making in complex industrial process. Actaautomatica Sinica, 2018, 44(11): 1931-1943
    [4] Arabnejad H, Barbosa J G. A budget constrained scheduling algorithm for workflow applications. Journal of Grid Computing, 2014, 12(4): 665-679 doi: 10.1007/s10723-014-9294-7
    [5] Lv M, Wang G. Research on workflow-based modeling method of product manufacturing process. International Journal of Smart Home, 2014, 8(3): 97-106 doi: 10.14257/ijsh
    [6] Mollajafari M, Shahhoseini H S. A cost-optimized GA-based heuristic for scheduling time-constrained workflow applications in infrastructure clouds using an innovative feasibility-assured decoding mechanism. Journal of Information Science and Engineering, 2016, 32(6): 1541-1560
    [7] Koch G K, Gallucci G O, Lee S J. Accuracy in the digital workflow: from data acquisition to the digitally milled cast. Journal of Prosthetic Dentistry, 2016, 115(6): 749-754 doi: 10.1016/j.prosdent.2015.12.004
    [8] Kianpisheh S, Charkari N M, Kargahi M. Reliability-driven scheduling of time/cost-constrained grid workflows. Future Generation Computer Systems, 2016, 55: 1-16 doi: 10.1016/j.future.2015.07.014
    [9] Chirkin A M, Belloum A S Z, Kovalchuk S V, Makkes M X, Melnik M A, Visheratin A A, et al.. Execution time estimation for workflow scheduling. Future Generation Computer System-The International Journal of Escience, 2017, 75(11): 376-387
    [10] Roberts P A, Willoughby I R, Barnes N. Evaluation of a gravimetric-based technology-assisted workflow system on hazardous sterile product preparation. American Journal of Health-system Pharmacy: AJHP: Official Journal of the American Society of Health-System Pharmacists, 2018, 75(17): 1286-1292 doi: 10.2146/ajhp170564
    [11] Lucas S A, Ribeiro R, Teixeira M. Modeling and control of flexible context-dependent manufacturing systems. Information Sciences, 2017, 421(12): 1-14
    [12] Stender M E, Beghini L L, Sugar J D, Veilleux M G, Subia S R, Smith T R, et al.. A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Additive Manufacturing, 2018, 21(5): 556-566
    [13] 敬石开, 姜浩, 许文婷, 周竞涛. 考虑执行可靠性的云制造服务组合算法. 计算机辅助设计与图形学学报, 2014, 26(3): 392-400

    Jing Shi-kai, Jiang Hao, Xu Wen-Ting, Zhou Jing-Tao. Cloud manufacturing service composition considering execution reliability. Jorunal of Computer-Aided Design & Computer Graphics, 2014, 26(3): 392-400
    [14] 张玺, 刘明周, 张铭鑫, 葛茂根. 基于改进模糊Petri网的制造车间重调度策略优化研究. 管理工程学报, 2017, 31(2): 216-221

    Zhang Xi, Liu Ming-zhou, Zhang Ming-xin, Ge Miao-Gen. Research on rescheduling strategy optimization in manufacturing shop based on improved fuzzy petri Net. Jonrnal of Industrial Engineering/Engineering Management, 2017, 31(2): 216-221
    [15] 张萌, 李国喜. 基于区间的制造服务组合多目标优化方法. 计算机集成制造系统, 2017, 23(8): 1787-1796

    Zhang Meng, LI Guo-xi. Multi-objective optimization of manufacturing service composition with interval numbers. Computer Integrated Manufacturing Systems, 2017, 23(8): 1787-1796
    [16] Luo Zhi-yong, Wang Peng, You Bo, Zhu Su-xia. Serial reduction optimization research of complex product workflow’s accuracy under the time constraint. Advances in Mechanical Engineering, 2016, 8(10): 1-9
    [17] 罗智勇, 朱梓豪, 尤波, 刘嘉辉. 虚拟工作流约束的时间-精确率迭代归约优化算法. 电子与信息学报, 2018, 40(08): 2013-2019

    Luo Zhi-yong, Zhu Zi-hao, You Bo, Liu Jia-Hui. Virtual iterative reduction optimization algorithm of workflow’s time-accuracy. Journal of Electronics and Information Technology, 2018, 40(08): 2013-2019
    [18] Woo J K, Dong K K, Seong H K. Cost adaptive VM management for scientific work-flow application in mobile cloud. Mobile Networks and Application, 2015, 20(3): 328-336 doi: 10.1007/s11036-015-0593-4
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  246
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 录用日期:  2019-07-10
  • 网络出版日期:  2022-03-10
  • 刊出日期:  2022-03-25

目录

    /

    返回文章
    返回