2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核电站蒸汽发生器水位的软约束预测控制

姜頔 刘向杰 孔小兵

姜頔, 刘向杰, 孔小兵. 核电站蒸汽发生器水位的软约束预测控制. 自动化学报, 2019, 45(6): 1111-1121. doi: 10.16383/j.aas.2018.c170647
引用本文: 姜頔, 刘向杰, 孔小兵. 核电站蒸汽发生器水位的软约束预测控制. 自动化学报, 2019, 45(6): 1111-1121. doi: 10.16383/j.aas.2018.c170647
JIANG Di, LIU Xiang-Jie, KONG Xiao-Bing. Soft Constrained MPC on Water Level Control in Steam Generator of a Nuclear Power Plant. ACTA AUTOMATICA SINICA, 2019, 45(6): 1111-1121. doi: 10.16383/j.aas.2018.c170647
Citation: JIANG Di, LIU Xiang-Jie, KONG Xiao-Bing. Soft Constrained MPC on Water Level Control in Steam Generator of a Nuclear Power Plant. ACTA AUTOMATICA SINICA, 2019, 45(6): 1111-1121. doi: 10.16383/j.aas.2018.c170647

核电站蒸汽发生器水位的软约束预测控制

doi: 10.16383/j.aas.2018.c170647
基金项目: 

国家自然科学基金 61673171

中央高校基本科研业务费专项基金 2017MS033

国家自然科学基金 61533013

国家自然科学基金 U1709211

国家自然科学基金 61603134

中央高校基本科研业务费专项基金 2017ZZD004

详细信息
    作者简介:

    姜頔  华北电力大学控制与计算机工程学院博士研究生.2012年获得上海电力学院自动化工程学院学士学位.主要研究方向为核反应堆蒸汽供应系统的优化控制.E-mail:fyjiangdi@ncepu.edu.cn

    孔小兵  华北电力大学控制与计算机工程学院讲师. 2008年获华北电力大学自动化系学士学位.主要研究方向为模型预测控制理论及其在能源电力系统控制中的应用.E-mail: kongxiaobing@ncepu.edu.cn

    通讯作者:

    刘向杰  华北电力大学控制与计算机工程学院教授.1989年获得东北大学自控系工业电气自动化专业学士学位.1997年获得东北大学自动化研究中心博士学位.主要研究方向为先进控制策略在电力过程控制中的应用.本文通信作者.E-mail:liuxj@ncepu.edu.cn

Soft Constrained MPC on Water Level Control in Steam Generator of a Nuclear Power Plant

Funds: 

Supported by National Natural Science Foundation of China 61673171

Fundamental Research Funds for the Central Universities 2017MS033

Supported by National Natural Science Foundation of China 61533013

Supported by National Natural Science Foundation of China U1709211

Supported by National Natural Science Foundation of China 61603134

Fundamental Research Funds for the Central Universities 2017ZZD004

More Information
    Author Bio:

     Ph. D. candidate at the School of Control and Computer Engineering, North China Electric Power University. He received his bachelor degree from Shanghai University of Electric Power in 2012. His main research interest is optimal control of nuclear steam supply system

     Lecturer at the School of Control and Computer Engineering, North China Electric Power University. She received her bachelor degree from North China Electric Power University in 2008. Her research interest covers model predictive control and its application in power industry

    Corresponding author: LIU Xiang-Jie  Professor at the School of Control and Computer Engineering, North China Electric Power University. He received his bachelor degree from Northeastern University in 1989, and the Ph. D. degree from the Research Center of Automation, Northeastern University in 1997. His main research interest is application of advanced control strategy in power process control. Corresponding author of this paper
  • 摘要: 核电站的蒸汽发生器(U-tube steam generator,UTSG)水位控制对核反应堆安全运行至关重要.模型预测控制(Model predictive control,MPC)具有内在的约束处理能力,是UTSG水位控制的有效方法.然而在大范围变功率情况下,水位硬约束会降低水位的控制性能,甚至导致系统不稳定.本文基于UTSG的分段线性输入输出模型,设计了水位软约束MPC.离线计算终端约束集,减少在线计算量,保证稳定性;引入两种松弛变量来放宽水位约束和终端约束集;在蒸汽流量扰动和功率变化情况下的仿真结果表明了算法的有效性.
    1)  本文责任编委 梅生伟
  • 图  1  UTSG结构示意图

    Fig.  1  Schematic of a U-tube steam generator

    图  2  UTSG模拟结构图

    Fig.  2  Block diagram of the UTSG model

    图  3  硬约束对UTSG零极点的影响

    Fig.  3  The influence of hard constraint on the zero pole of UTSG

    图  4  硬约束MPC有可行解的蒸汽范围

    Fig.  4  The feasible steam range of activated hard constraint MPC

    图  5  Pareto最优曲线

    Fig.  5  Pareto optimal front

    图  6  约束MPC示意图

    Fig.  6  Soft constrained MPC schematic diagram

    图  7  约束MPC水位响应

    Fig.  7  Hard constrained MPC water level response

    图  8  不同约束处理对水位的影响

    Fig.  8  The effect of different constraint handling on water level

    图  9  不同MPC的性能指标

    Fig.  9  The cost functions for different MPCs

    图  10  水位偏差和松弛变量的关系

    Fig.  10  The relationship between water level deviation and slack variables

    图  11  软约束MPC水位响应

    Fig.  11  Water level response of soft constrained MPC

    图  12  不同约束处理方式闭环控制性能

    Fig.  12  The closed loop cost functions of different constraint handling

    图  13  高负荷下无约束和软约束MPC控制比较

    Fig.  13  Comparison of unconstrained and soft constrained MPC control under high power

    表  1  软约束MPC计算量

    Table  1  The computation of soft constrained MPC

    状态个数 控制量个数 控制时域 决策变量个数 等式约束个数 不等式约束个数 最小时间 最大时间 平均时间
    5 1 10 32 50 86 90 ms 302 ms 147 ms
    下载: 导出CSV
  • [1] 张小冬, 刘琳. AP 1000反应堆控制系统特点分析.核动力工程, 2011, 32(4):62-65 http://d.old.wanfangdata.com.cn/Periodical/hdlgc201104014

    Zhang Xiao-Dong, Liu Lin. Analysis of AP 1000 reactor power control system. Nuclear Power Engineering, 2011, 32(4):62-65 http://d.old.wanfangdata.com.cn/Periodical/hdlgc201104014
    [2] Parlos A G, Rais O T. Nonlinear control of U-tube steam generators via H control. Control Engineering Practice, 2000, 8(8):921-936 doi: 10.1016/S0967-0661(00)00020-4
    [3] Dong Z, Huang X J, Feng J T. Water-level control for the U-tube steam generator of nuclear power plants based on output feedback dissipation. IEEE Transactions on Nuclear Science, 2009, 56(3):1600-1612 doi: 10.1109/TNS.2009.2019593
    [4] Wei L, Fang F, Shi Y. Adaptive backstepping-based composite nonlinear feedback water level control for the nuclear U-tube steam generator. IEEE Transactions on Control Systems Technology, 2014, 22(1):369-377 doi: 10.1109/TCST.2013.2250504
    [5] 陈红, 曾建, 王广军.蒸汽发生器水位的自抗扰控制.中国电机工程学报, 2010, 30(32):103-107 http://d.old.wanfangdata.com.cn/Periodical/zgdl201406018

    Chen Hong, Zeng Jian, Wang Guang-Jun. Steam generator water level control based on active disturbances rejection control. Proceedings of the CSEE, 2010, 30(32):103-107 http://d.old.wanfangdata.com.cn/Periodical/zgdl201406018
    [6] 席裕庚, 李德伟, 林姝.模型预测控制——现状与挑战.自动化学报, 2013, 39(3):222-236 http://www.aas.net.cn/CN/abstract/abstract17874.shtml

    Xi Yu-Geng, Li De-Wei, Lin Shu. Model predictive control-status and challenges. Acta Automatica Sinica, 2013, 39(3):222-236 http://www.aas.net.cn/CN/abstract/abstract17874.shtml
    [7] 柴天佑, 李少远, 王宏.网络信息模式下复杂工业过程建模与控制.自动化学报, 2013, 39(5):469-470 http://www.aas.net.cn/CN/abstract/abstract17922.shtml

    Chai Tian-You, Li Shao-Yuan, Wang Hong. Modeling and control for complex industrial processes in networked information. Acta Automatica Sinica, 2013, 39(5):469-470 http://www.aas.net.cn/CN/abstract/abstract17922.shtml
    [8] Qi S J, Badgwell T A. A survey of industrial model predictive control technology. Control Engineering Practice, 2003, 11(7):733-764 doi: 10.1016/S0967-0661(02)00186-7
    [9] 刘向杰, 孔小兵.电力工业复杂系统模型预测控制——现状与发展.中国电机工程学报, 2013, 33(5):79-85 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201305012

    Liu Xiang-Jie, Kong Xiao-Bing. Present situation and prospect of model predictive control application in complex power industrial process. Proceedings of the CSEE, 2013, 33(5):79-85 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201305012
    [10] 孔小兵, 刘向杰.永磁同步电机高效非线性模型预测控制.自动化学报, 2014, 40(9):1958-1966 http://www.aas.net.cn/CN/abstract/abstract18466.shtml

    Kong Xiao-Bing, Liu Xiang-Jie. Efficient nonlinear model predictive control for permanent magnet synchronous motor. Acta Automatica Sinica, 2014, 40(9):1958-1966 http://www.aas.net.cn/CN/abstract/abstract18466.shtml
    [11] 郑毅, 李少远.网络信息模式下分布式系统协调预测控制.自动化学报, 2013, 39(11):1778-1786 http://www.aas.net.cn/CN/abstract/abstract18217.shtml

    Zheng Yi, Li Shao-Yuan. Networked cooperative distributed model predictive control for dynamic coupling systems. Acta Automatica Sinica, 2013, 39(11):1778-1786 http://www.aas.net.cn/CN/abstract/abstract18217.shtml
    [12] 朱宇轩, 李少远.双层模型预测控制系统的多包镇定域分析与系统设计.自动化学报, 2018, 44(2):262-269 http://www.aas.net.cn/CN/abstract/abstract19221.shtml

    Zhu Yu-Xuan, Li Shao-Yuan. Analysis and system design of multi-convex hull stabilization domain for double-layered model predictive control system. Acta Automatica Sinica, 2018, 44(2):262-269 http://www.aas.net.cn/CN/abstract/abstract19221.shtml
    [13] 杨亚茹, 李少远.切换非线性系统全局优化运行的经济预测控制.自动化学报, 2017, 43(6):1017-1027 http://www.aas.net.cn/CN/abstract/abstract19077.shtml

    Yang Ya-Ru, Li Shao-Yuan. Economic model predictive control for global optimal operation of nonlinear switching systems. Acta Automatica Sinica, 2017, 43(6):1017-1027 http://www.aas.net.cn/CN/abstract/abstract19077.shtml
    [14] Kothare M V, Mettler B, Morari M, Bendotti P, Falinower C M. Level control in the steam generator of a nuclear power plant. IEEE Transactions on Control Systems Technology, 2000, 8(1):55-69 doi: 10.1109/87.817692
    [15] Hu K, Yuan J Q. Multi-model predictive control method for nuclear steam generator water level. Energy Conversion and Management, 2008, 49(5):1167-1174 doi: 10.1016/j.enconman.2007.09.006
    [16] 姜頔, 刘向杰.核电站蒸汽发生器水位模糊预测控制.控制理论与应用, 2015, 32(12):1705-1712 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201512019

    Jiang Di, Liu Xiang-Jie. Fuzzy-model predictive control on water level of U-tube steam generator. Control Theory & Applications, 2015, 32(12):1705-1712 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201512019
    [17] Kavaklioglu K. Support vector regression model based predictive control of water level of U-tube steam generators. Nuclear Engineering and Design, 2014, 278:651-660 doi: 10.1016/j.nucengdes.2014.08.018
    [18] Rawlings J B, Muske K R. The stability of constrained receding horizon control. IEEE Transactions on Automatic Control, 1993, 38(10):1512-1516 doi: 10.1109/9.241565
    [19] Scokaert P O M, Rawlings J B. Feasibility issues in linear model predictive control. AIChE Journal, 1999, 45(8):1649-1659 doi: 10.1002/(ISSN)1547-5905
    [20] Zeilinger M N, Morari M, Jones C N. Soft constrained model predictive control with robust stability guarantees. IEEE Transactions on Automatic Control, 2014, 59(5):1190-1202 doi: 10.1109/TAC.2014.2304371
    [21] Irving E, Miossec C, Tassart J. Towards efficient full automatic operation of the pwr steam generator with water level adaptive control. In:Proceedings of the 2nd International Conforence Boiler Dynamics and Control in Nuclear Power Stations. London, UK:British Nuclear Energy Society, 1980. 309-329
    [22] Mayne D Q, Rawlings J B, Rao C V, Scokaert P O M. Constrained model predictive control:stability and optimality. Automatica, 2000, 36(6):789-814 doi: 10.1016/S0005-1098(99)00214-9
    [23] Limon D, Alvarado I, Alamo T, Camacho E F. MPC for tracking piecewise constant references for constrained linear systems. Automatica, 2008, 44(9):2382-2387 doi: 10.1016/j.automatica.2008.01.023
    [24] Andersen E D, Roos C, Terlaky T. On implementing a primal-dual interior-point method for conic quadratic optimization. Mathematical Programming, 2003, 95(2):249-277 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ee9470592d05af0170c016fb2fa7237
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  2526
  • HTML全文浏览量:  343
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-16
  • 录用日期:  2018-03-16
  • 刊出日期:  2019-06-20

目录

    /

    返回文章
    返回