[1] 黄立威, 李彩萍, 张海粟, 刘玉超, 李德毅, 刘艳博.一种基于因子图模型的半监督社区发现方法.自动化学报, 2016, 42(10): 1520-1531 doi: 10.16383/j.aas.2016.c150261

Huang Li-Wei, Li Cai-Ping, Zhang Hai-Su, Liu Yu-Chao, Li De-Yi, Liu Yan-Bo. A semi-supervised community detection method based on factor graph model. Acta Automatica Sinica, 2016, 42(10): 1520-1531 doi: 10.16383/j.aas.2016.c150261
[2] Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826 doi: 10.1073/pnas.122653799
[3] Newman M E J. Fast algorithm for detecting community structure in networks. Physical Review E, 2004, 69(6): Article No. 066133 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0309508
[4] Raghavan U N, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 2007, 76(3): Article No. 036106 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0709.2938
[5] Chakrabarti D, Kumar R, Tomkins A. Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA, USA: ACM, 2006. 554-560 http://www.researchgate.net/publication/221654105_Evolutionary_clustering
[6] Pan S R, Zhu X Q, Zhang C Q, Yu P S. Graph stream classification using labeled and unlabeled graphs. In: Proceedings of the IEEE 29th International Conference on Data Engineering (ICDE). Brisbane, QLD, Australia: IEEE, 2013. 398-409 http://www.researchgate.net/publication/261345341_Graph_stream_classification_using_labeled_and_unlabeled_graphs
[7] Zhao Y C, Wang G, Yu P S, Liu S B, Zhang S. Inferring social roles and statuses in social networks. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, USA: ACM, 2013. 695-703 http://www.researchgate.net/publication/266654052_Inferring_social_roles_and_statuses_in_social_networks
[8] Choobdar S, Ribeiro P, Parthasarathy S, Silva F. Dynamic inference of social roles in information cascades. Data Mining and Knowledge Discovery, 2015, 29(5): 1152-1177 doi: 10.1007/s10618-015-0402-5
[9] Grover A, Leskovec J. Node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA: ACM, 2016. 855-864 https://www.researchgate.net/publication/305997704_node2vec_Scalable_Feature_Learning_for_Networks
[10] 常振超.在线社会网络社团检测关键技术研究[博士学位论文], 解放军信息工程大学, 中国, 2016

Chang Zhen-Chao. Research on Key Technologies of Community Detection in Online Social Networks[Ph.D. dissertation], Information Engineering University, China, 2016
[11] Lin Y R, Chi Y, Zhu S, Sundaram H, Tseng B L. Analyzing communities and their evolutions in dynamic social networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 2009, 3(2): Article No. 8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=WFHYXW320184
[12] Chi Y, Song X D, Zhou D Y, Hino K, Tseng B L. Evolutionary spectral clustering by incorporating temporal smoothness. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, California, USA: ACM, 2007. 153-162
[13] Dinh T N, Nguyen N P, Thai M T. An adaptive approximation algorithm for community detection in dynamic scale-free networks. In: Proceedings of the 2013 IEEE International Conference on Computer Communications. Turin, Italy: IEEE, 2013. 55-59 http://www.researchgate.net/publication/261462402_An_adaptive_approximation_algorithm_for_community_detection_in_dynamic_scale-free_networks
[14] Sun J M, Faloutsos C, Papadimitriou S, Yu P S. Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, California, USA: ACM, 2007. 687-696 http://www.researchgate.net/publication/221654321_GraphScope_parameter-free_mining_of_large_time-evolving_graphs
[15] 肖杰斌, 张绍武.基于随机游走和增量相关节点的动态网络社团挖掘算法.电子与信息学报, 2013, 35(4): 977-981 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkxxk201304036

Xiao Jie-Bin, Zhang Shao-Wu. An algorithm of integrating random walk and increment correlative vertexes for mining community of dynamic networks. Journal of Electronics & Information Technology, 2013, 35(4): 977-981 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkxxk201304036
[16] Ning H Z, Xu W, Chi Y, Gong Y H, Huang T S. Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recognition, 2010, 43(1): 113-127 http://cn.bing.com/academic/profile?id=46240821097459119fa011826a06c99a&encoded=0&v=paper_preview&mkt=zh-cn
[17] Ma X K, Gao L, Yong X R, Fu L D. Semi-supervised clustering algorithm for community structure detection in complex networks. Physica A: Statistical Mechanics and its Applications, 2010, 389(1): 187-197 doi: 10.1016/j.physa.2009.09.018
[18] Allahverdyan A E, Ver Steeg G, Galstyan A. Community detection with and without prior information. EPL (Europhysics Letters), 2010, 90(1): Article No. 18002 doi: 10.1209/0295-5075/90/18002
[19] Eaton E, Mansbach R. A spin-glass model for semi-supervised community detection. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence. Toronto, Ontario, Canada: AAAI, 2012. 900-906 https://www.researchgate.net/publication/268350911_A_Spin-Glass_Model_for_Semi-Supervised_Community_Detection
[20] Liu D, Liu X, Wang W J, Bai H Y. Semi-supervised community detection based on discrete potential theory. Physica A: Statistical Mechanics and its Applications, 2014, 416: 173-182 doi: 10.1016/j.physa.2014.08.051
[21] Yang L, Cao X C, Jin D, Wang X, Meng D. A unified semi-supervised community detection framework using latent space graph regularization. IEEE Transactions on Cybernetics, 2015, 45(10): 2585-2598 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=05d1e8c05c606c057da50daac18de1a3
[22] Li L, Du M, Liu G, Hu X G, Wu G Q. Extremal optimization-based semi-supervised algorithm with conflict pairwise constraints for community detection. In: Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). Beijing, China: IEEE, 2014. 180-187 http://www.researchgate.net/publication/286758921_Extremal_optimization-based_semi-supervised_algorithm_with_conflict_pairwise_constraints_for_community_detection
[23] Li K, Guo S X, Du N, Gao J, Zhang A D. Learning, analyzing and predicting object roles on dynamic networks. In: Proceedings of IEEE 13th International Conference on Data Mining (ICDM). Dallas, TX, USA: IEEE, 2013. 428-437 http://www.researchgate.net/publication/269033111_Learning_Analyzing_and_Predicting_Object_Roles_on_Dynamic_Networks
[24] Yao Y B, Holder L. Scalable SVM-based classification in dynamic graphs. In: Proceedings of the 2014 IEEE International Conference on Data Mining (ICDM). Shenzhen, China: IEEE, 2014. 650-659 http://www.researchgate.net/publication/282237894_Scalable_SVM-Based_Classification_in_Dynamic_Graphs?ev=auth_pub
[25] Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge: MIT Press, 2009.
[26] Tang W B, Zhuang H L, Tang J. Learning to infer social ties in large networks. In: Proceeding of the 2011 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg: Springer, 2011. 381-397
[27] Yang Z, Tang J, Li J Z, Yang W J. Social community analysis via a factor graph model. IEEE Intelligent Systems, 2011, 26(3): 58-65 doi: 10.1109/MIS.2010.55
[28] Xu H, Yang Y J, Wang L W, Liu W H. Node classification in social network via a factor graph model. In: Proceedings of the 2013 Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer, 2013. 213-224 https://www.researchgate.net/publication/273204869_Node_Classification_in_Social_Network_via_a_Factor_Graph_Model
[29] Murphy K P, Weiss Y, Jordan M I. Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden: Morgan Kaufmann Publishers Inc., 1999. 467-475 http://www.researchgate.net/publication/235356658_Loopy_Belief
[30] Mao Q, Wang L, Tsang I W, Sun Y J. Principal graph and structure learning based on reversed graph embedding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(11): 2227-2241 doi: 10.1109/TPAMI.2016.2635657
[31] Chen S H, Niu S F, Akoglu L, Kovačević J, Faloutsos C. Fast, Warped Graph Embedding: Unifying Framework and One-Click Algorithm. arXiv preprint arXiv: 1702.05764, 2017.
[32] Shijia E, Jia S B, Xiang Y, Ji Z L. Knowledge graph embedding for link prediction and triplet classification. In: Proceedings of the 2016 Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data. Singapore: Springer, 2016. 228-232 https://www.researchgate.net/publication/310742316_Knowledge_Graph_Embedding_for_Link_Prediction_and_Triplet_Classification
[33] Hu W M, Gao J, Xing J L, Zhang C, Maybank S. Semi-supervised tensor-based graph embedding learning and its application to visual discriminant tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(1): 172-188 doi: 10.1109/TPAMI.2016.2539944
[34] Lueckenga J, Engel D, Green R. Weighted vote algorithm combination technique for anomaly based smart grid intrusion detection systems. In: Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN). Vancouver, BC, Canada: IEEE, 2016. 2738-2742 Weighted vote algorithm combination technique for anomaly based smart grid intrusion detection systems