[1] Gao Z W, Cecati C, Ding S X. A survey of fault diagnosis and fault-tolerant techniques — Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757−3767 doi: 10.1109/TIE.2015.2417501
[2] 周东华, 叶银忠. 现代故障诊断与容错控制. 北京: 清华大学出版社, 2000.

Zhou Dong-Hua, Ye Yin-Zhong. Fault Diagnosis and Fault-Tolerant Control. Beijing: Tsinghua University Press, 2000.
[3] 刘强, 卓洁, 郎自强, 秦泗钊. 数据驱动的工业过程运行监控与自优化研究展望. 自动化学报, 2018, 44(11): 1944−1956

Liu Qiang, Zhuo Jie, Lang Zi-Qiang, Qin S. Joe. Perspectives on data-driven operation monitoring and self-optimization of industrial processes. Acta Automatica Sinica, 2018, 44(11): 1944−1956
[4] 周东华, 纪洪泉, 何潇. 高速列车信息控制系统的故障诊断技术. 自动化学报, 2018, 44(7): 1153−1164

Zhou Dong-Hua, Ji Hong-Quan, He Xiao. Fault diagnosis techniques for the information control system of high-speed trains. Acta Automatica Sinica, 2018, 44(7): 1153−1164
[5] 吴高昌, 刘强, 柴天佑, 秦泗钊. 基于时序图像深度学习的电熔镁炉异常工况诊断. 自动化学报, 2019, 45(8): 1475−1485

Wu Gao-Chang, Liu Qiang, Chai Tian-You, Qin S. Joe. Abnormal condition diagnosis through deep learning of image sequences for fused magnesium furnaces. Acta Automatica Sinica, 2019, 45(8): 1475−1485
[6] 周东华, 胡艳艳. 动态系统的故障诊断技术. 自动化学报, 2009, 35(6): 748−758 doi: 10.3724/SP.J.1004.2009.00748

Zhou Dong-Hua, Hu Yan-Yan. Fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2009, 35(6): 748−758 doi: 10.3724/SP.J.1004.2009.00748
[7] Mehra R K, Peschon J. An innovations approach to fault detection and diagnosis in dynamic systems. Automatica, 1971, 7(5): 637−640 doi: 10.1016/0005-1098(71)90028-8
[8] Patton R J, Frank P M, Clark R N. Issues of Fault Diagnosis for Dynamic Systems. London: Springer-Verlag, 2000.
[9] He X, Wang Z D, Zhou D H. Robust fault detection for networked systems with communication delay and data missing. Automatica, 2009, 45(11): 2634−2639 doi: 10.1016/j.automatica.2009.07.020
[10] He X, Wang Z D, Liu Y, Zhou D H. Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach. IEEE Transactions on Industrial Informatics, 2013, 9(3): 1670−1679 doi: 10.1109/TII.2013.2251891
[11] Zhou D H, He X, Wang Z D, Liu G P, Ji Y D. Leakage fault diagnosis for an Internet-based three-tank system: An experimental study. IEEE Transactions on Control Systems Technology, 2012, 20(4): 857−870 doi: 10.1109/TCST.2011.2154383
[12] Zhang X J, Zarrop M B. Auxiliary signals for improving on-line fault detection. In: Proceedings of the 1988 International Conference on Control. Oxford, UK: IET, 1988.
[13] Nett C N, Jacobson C A, Miller A T. An integrated approach to controls and diagnostics: The 4-parameter controller. In: Proceedings of the 1988 American Control Conference. Atlanta, United States: IEEE, 1988. 824−835
[14] Raimondo D M, Marseglia G R, Braatz R D, Scott J K. Closed-loop input design for guaranteed fault diagnosis using set-valued observers. Automatica, 2016, 74: 107−117 doi: 10.1016/j.automatica.2016.07.033
[15] Scott J K, Findeisen R, Braatz R D, Raimondo D M. Input design for guaranteed fault diagnosis using zonotopes. Automatica, 2014, 50(6): 1580−1589 doi: 10.1016/j.automatica.2014.03.016
[16] Šimandl M, Punčochář I. Active fault detection and control: unified formulation and optimal design. Automatica, 2009, 45(9): 2052−2059 doi: 10.1016/j.automatica.2009.04.028
[17] Ashari A E, Nikoukhah R, Campbell S L. Auxiliary signal design for robust active fault detection of linear discrete-time systems. Automatica, 2011, 47(9): 1887−1895 doi: 10.1016/j.automatica.2011.06.009
[18] Heirung T A N, Mesbah A. Input design for active fault diagnosis. Annual Reviews in Control, 2019, 47: 35−50 doi: 10.1016/j.arcontrol.2019.03.002
[19] Punčochář I, Škach J. A survey of active fault diagnosis methods. IFAC-PapersOnLine, 2018, 51(24): 1091−1098 doi: 10.1016/j.ifacol.2018.09.726
[20] Ashari A E, Nikoukhah R, Campbell S L. Effects of feedback on active fault detection. Automatica, 2012, 48(5): 866−872 doi: 10.1016/j.automatica.2012.02.020
[21] Campbell S L, Scott J R. Asynchronous auxiliary signal design for failure detection. In: Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). San Diego, USA: IEEE, 2014. 2727−2732
[22] Campbell S L, Horton K G, Nikoukhah R. Auxiliary signal design for rapid multi-model identification using optimization. Automatica, 2002, 38(8): 1313−1325 doi: 10.1016/S0005-1098(02)00040-7
[23] Choe D, Campbell S L, Nikoukhah R. Optimal piecewise-constant signal design for active fault detection. International Journal of Control, 2009, 82(1): 130−146 doi: 10.1080/00207170801993587
[24] Fair M, Campbell S L. Active incipient fault detection with more than two simultaneous faults. In: Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics. San Antonio, USA: IEEE, 2009. 3322−3327
[25] Nikoukhah R, Campbell S L, Horton K G, Delebecque F. Auxiliary signal design for robust multimodel identification. IEEE Transactions on Automatic Control, 2002, 47(1): 158−164 doi: 10.1109/9.981737
[26] Blackmore L, Williams B. Finite horizon control design for optimal discrimination between several models. In: Proceedings ofthe 45th IEEE Conference on Decision and Control. San Diego,USA: IEEE, 2006: 1147−1152
[27] Zhang X J. Auxiliary Signal Design in Fault Detection and Diagnosis. Heidelberg: Springer-Verlag, 1989
[28] Kim K K K, Raimondo D M, Braatz R D. Optimum input design for fault detection and diagnosis: model-based prediction and statistical distance measures. In: Proceedings of the 2013 European Control Conference (ECC). Zurich, Switzerland: IEEE, 2013. 1940−1945
[29] Paulson J A, Heirung T A N, Braatz R D, Mesbah A. Closed-loop active fault diagnosis for stochastic linear systems. In: Proceedings of the 2018 Annual American Control Conference (ACC). Milwaukee, USA: IEEE, 2018. 735−741
[30] Mesbah A, Streif S, Findeisen R, Braatz R D. Active fault diagnosis for nonlinear systems with probabilistic uncertainties. IFAC Proceedings Volumes, 2014, 47(3): 7079−7084 doi: 10.3182/20140824-6-ZA-1003.01594
[31] Paulson J A, Raimondo D M, Findeisen R, Braatz R D, Streif S. Guaranteed active fault diagnosis for uncertain nonlinear systems. In: Proceedings of the 2014 European Control Conference (ECC). Strasbourg, France: IEEE, 2014. 926−931
[32] Busch R, Peddle I K. Active fault detection for open loop stable LTI SISO systems. International Journal of Control, Automation and Systems, 2014, 12(2): 324−332 doi: 10.1007/s12555-012-0500-8
[33] Kerestecioğlu F. Change Detection and Input Design in Dynamical Systems. Baldock, Hertfordshire: Research Studies Press, 1993.
[34] Uosaki K, Takata N, Hatanaka T. Optimal auxiliary input for on-line fault detection and fault diagnosis. IFAC Proceedings Volumes, 1993, 26(2): 441−446
[35] Kerestecioğlu F, Çetin İ. Auxiliary signal design for detecting changes towards unknown hypotheses. In: Proceedings of the 12th IEEE International Symposium on Intelligent Control. Istanbul, Turkey: IEEE, 1997. 297−302
[36] Kerestecioğlu F, Zarrop M B. Input design for detection of abrupt changes in dynamical systems. International Journal of Control, 1994, 59(4): 1063−1084 doi: 10.1080/00207179408923118
[37] Kerestecioğlu F, Çetin İ. Auxiliary input design for detecting changes towards partially known hypotheses. IFAC Proceedings Volumes, 1997, 30(18): 1023−1028 doi: 10.1016/S1474-6670(17)42535-3
[38] Kerestecioğlu F, Çetin İ. Optimal input design for the detection of changes towards unknown hypotheses. International Journal of Systems Science, 2004, 35(7): 435−444 doi: 10.1080/00207720410001734219
[39] Nikoukhah R, Campbell S L, Delebecque F. Detection signal design for failure detection: A robust approach. International Journal of Adaptive Control and Signal Processing, 2000, 14(7): 701−724 doi: 10.1002/1099-1115(200011)14:7<701::AID-ACS617>3.0.CO;2-6
[40] Niemann H. A setup for active fault diagnosis. IEEE Transactions on Automatic Control, 2006, 51(9): 1572−1578 doi: 10.1109/TAC.2006.878724
[41] Ashari A E, Nikoukhah R, Campbell S L. Active robust fault detection in closed-loop systems: Quadratic optimization approach. IEEE Transactions on Automatic Control, 2012, 57(10): 2532−2544 doi: 10.1109/TAC.2012.2188430
[42] Blanchini F, Casagrande D, Giordano G, Miani S, Olaru S, Reppa V. Active fault isolation: A duality-based approach via convex programming. SIAM Journal on Control and Optimization, 2017, 55(3): 1619−1640 doi: 10.1137/15M1046046
[43] Kim K K K, Braatz R D. Semidefinite programming relaxation of optimum active input design for fault detection and diagnosis: model-based finite horizon prediction. In: Proceedings of the 2013 European Control Conference (ECC). Zurich, Switzerland: IEEE, 2013. 1934−1939
[44] Ashari A E, Nikoukhah R, Campbell S L. Active robust fault detection of closed-loop systems: General cost case. IFAC Proceedings Volumes, 2009, 42(8): 585−590 doi: 10.3182/20090630-4-ES-2003.00097
[45] Niemann H, Poulsen N K. Active fault detection in MIMO systems. In: Proceedings of the 2014 American Control Conference. Portland, USA: IEEE, 2014. 1975−1980
[46] Hatanaka T, Uosaki K. Frequency domain approach to optimal auxiliary input design for fault diagnosis. In: Proceedings of the 1999 European Control Conference (ECC). Karlsruhe, Germany: IEEE, 1999. 1717−1722
[47] Andjelkovic I, Sweetingham K, Campbell S L. Active fault detection in nonlinear systems using auxiliary signals. In: Proceedings of the 2008 American Control Conference. Seattle, USA: IEEE, 2008. 2142−2147
[48] Campbell S L, Drake K, Nikoukhah R. Analysis of spline based auxiliary signal design for failure detection in delay systems. In: Proceedings of the 2003 IEEE International Conference on Systems, Man and Cybernetics. Washington, DC, USA: IEEE, 2003. 2551−2556
[49] Šimandl M, Punčochář I, Královec J. Rolling horizon for active fault detection. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE, 2005. 3789−3794
[50] Campbell S L, Drake K J, Andjelkovic I, Sweetingham K, Choe D. Model based failure detection using test signals from linearizations: a case study. In: Proceedings of the 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. Munich, Germany: IEEE, 2006. 2659−2664
[51] Jacobson C A, Nett C N. An integrated approach to controls and diagnostics using the four parameter controller. IEEE Control Systems Magazine, 1991, 11(6): 22−29 doi: 10.1109/37.92987
[52] Jacobson C A, Valavanis K P. Review of the four parameter controller approach for FDI problems. In: Proceedings of the 5th IEEE International Symposium on Intelligent Control 1990. Philadelphia, USA: IEEE, 1990. 577−582
[53] Niemann H. Fault tolerant control based on active fault diagnosis. In: Proceedings of the 2005 American Control Conference. Portland, USA: IEEE, 2005. 2224−2229
[54] Niemann H. A model-based approach to fault-tolerant control. International Journal of Applied Mathematics and Computer Science, 2012, 22(1): 67−86 doi: 10.2478/v10006-012-0005-x
[55] Wang J, Zhang J J, Qu B, Wu H Y, Zhou J L. Unified architecture of active fault detection and partial active fault-tolerant control for incipient faults. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(7): 1688−1700 doi: 10.1109/TSMC.2017.2667683
[56] Niemann H, Poulsen N K. Active fault diagnosis in closed-loop systems. IFAC Proceedings Volumes, 2005, 38(1): 448−453
[57] Niemann H. Active fault diagnosis in closed-loop uncertain systems. IFAC Proceedings Volumes, 2006, 39(13): 587−592 doi: 10.3182/20060829-4-CN-2909.00097
[58] Poulsen N K, Niemann H. Active fault diagnosis based on stochastic tests. International Journal of Applied Mathematics and Computer Science, 2008, 18(4): 487−496 doi: 10.2478/v10006-008-0043-6
[59] Niemann H, Poulsen N K. Active fault diagnosis in sampled-data systems. IFAC-PapersOnLine, 2015, 48(21): 883−888 doi: 10.1016/j.ifacol.2015.09.638
[60] Nikoukhah R. Guaranteed active failure detection and isolation for linear dynamical systems. Automatica, 1998, 34(11): 1345−1358 doi: 10.1016/S0005-1098(98)00079-X
[61] Scott J K, Marseglia G R, Magni L, Braatz R D, Raimondo D M. A hybrid stochastic-deterministic input design method for active fault diagnosis. In: Proceedings of the 52nd IEEE Conference on Decision and Control. Florence, Italy: IEEE, 2013. 5656−5661
[62] Punčochář I, Škach J, Šimandl M. Infinite time horizon active fault diagnosis based on approximate dynamic programming. In: Proceedings of the 54th IEEE Conference on Decision and Control (CDC). Osaka, Japan: IEEE, 2015. 4456−4461
[63] Blackmore L, Rajamanoharan S, Williams B C. Active estimation for jump markov linear systems. IEEE Transactions on Automatic Control, 2008, 53(10): 2223−2236 doi: 10.1109/TAC.2008.2006100
[64] Heirung T A N, Mesbah A. Stochastic nonlinear model predictive control with active model discrimination: A closed-loop fault diagnosis application. IFAC-PapersOnLine, 2017, 50(1): 15934−15939 doi: 10.1016/j.ifacol.2017.08.1745
[65] Kerestecioğlu F, Zarrop M B. Bayesian approach to optimal input design for failure detection and diagnosis. Adaptive Systems in Control and Signal Processing 1989. Glasgow, UK: Elsevier, 1990. 525−529
[66] Hatanaka T, Uosaki K. Optimal auxiliary input design for fault diagnosis. IFAC Proceedings Volumes, 1999, 32(2): 3862−3867 doi: 10.1016/S1474-6670(17)56659-8
[67] Hatanaka T, Uosaki K. Optimal auxiliary input for fault detection-frequency domain approach. IFAC Proceedings Volumes, 1994, 27(8), 1069−1074
[68] Hatanaka T, Uosaki K. Optimal auxiliary input for fault detection and fault diagnosis. In: Proceedings of the 1996 Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design. Dearborn, USA: IEEE, 1996. 117−122
[69] Škach J, Punčochář I, Straka O. Active fault diagnosis for jump markov nonlinear systems. IFAC-PapersOnLine, 2017, 50(1): 7308−7313 doi: 10.1016/j.ifacol.2017.08.1465
[70] Nikoukhah R, Campbell S L. Auxiliary signal design for active failure detection in uncertain linear systems with a priori information. Automatica, 2006, 42(2): 219−228 doi: 10.1016/j.automatica.2005.09.011
[71] Marseglia G R, Scott J K, Magni L, Braatz R D, Raimondo D M. A hybrid stochastic-deterministic approach for active fault diagnosis using scenario optimization. IFAC Proceedings Volumes, 2014, 47(3): 1102−1107 doi: 10.3182/20140824-6-ZA-1003.02590
[72] Scott J K, Findeisen R, Braatz R D, Raimondo D M. Design of active inputs for set-based fault diagnosis. In: Proceedings of the 2013 American Control Conference. Washington, USA: IEEE, 2013. 3561−3566
[73] Marseglia G R, Raimondo D M. Active fault diagnosis: A multi-parametric approach. Automatica, 2017, 79: 223−230 doi: 10.1016/j.automatica.2017.01.021
[74] Scott J K, Raimondo D M, Marseglia G R, Braatz R D. Constrained zonotopes: A new tool for set-based estimation and fault detection. Automatica, 2016, 69: 126−136 doi: 10.1016/j.automatica.2016.02.036
[75] Rego B S, Raffo G V, Scott J K, Raimondo D M. Guaranteed methods based on constrained zonotopes for set-valued state estimation of nonlinear discrete-time systems. Automatica, 2020, 111: 1−14
[76] Nikoukhah R, Campbell S L. On the detection of small parameter variations in linear uncertain systems. European Journal of Control, 2008, 14(2): 158−171 doi: 10.3166/ejc.14.158-171
[77] Nikoukhah R, Campbell S L, Drake K. An active approach for detection of incipient faults. International Journal of Systems Science, 2010, 41(2): 241−257
[78] Raimondo D M, Braatz R D, Scott J K. Active fault diagnosis using moving horizon input design. In: Proceedings of the 2013 European Control Conference (ECC). Zurich, Switzerland: IEEE, 2013. 3131−3136
[79] Heirung T A N, Santos T L M, Mesbah A. Model predictive control with active learning for stochastic systems with structural model uncertainty: Online model discrimination. Computers & Chemical Engineering, 2019, 128(SEP.2): 128−140
[80] Paulson J A, Martin-Casas M, Mesbah A. Input design for online fault diagnosis of nonlinear systems with stochastic uncertainty. Industrial & Engineering Chemistry Research, 2017, 56(34): 9593−9605
[81] Wang Y, Olaru S, Valmorbida G, Puig V, Cembrano G. Set-invariance characterizations of discrete-time descriptor systems with application to active mode detection. Automatica, 2019, 107: 255−263 doi: 10.1016/j.automatica.2019.05.053
[82] Lin F, Wang L Y, Chen W, Han L T, Shen B. N-diagnosability for active on-line diagnosis in discrete event systems. Automatica, 2017, 83: 220−225 doi: 10.1016/j.automatica.2017.06.004
[83] Punčochár I, Šimandl M. On infinite horizon active fault diagnosis for a class of non-linear non-Gaussian systems. International Journal of Applied Mathematics and Computer Science, 2014, 24(4): 795−807 doi: 10.2478/amcs-2014-0059
[84] Fair M, Campbell S L. Active incipient fault detection with two simultaneous faults. IFAC Proceedings Volumes, 2009, 42(8): 573−578 doi: 10.3182/20090630-4-ES-2003.00095
[85] Scola H R, Nikoukhah R, Delebecque F. Test signal design for failure detection: A linear programming approach. International Journal of Applied Mathematics and Computer Science, 2003, 13(4): 515−526
[86] Tabatabaeipour S M. Active fault detection and isolation of discrete-time linear time-varying systems: A set-membership approach. International Journal of Systems Science, 2015, 46(11): 1917−1933 doi: 10.1080/00207721.2013.843213
[87] Wang J D, Wang J, Zhou J L. On-line active fault detection based on set-membership ellipsoid and moving window. In: Proceedings of the 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). Hubei, China: IEEE, 2018. 420−425
[88] Yang J W, Hamelin F, Sauter D. Active fault diagnosis based on a framework of optimization for closed loop system. In: Proceedings of the 2014 International Conference on Control, Decision and Information Technologies (CoDIT). Metz, France: IEEE, 2014. 387−392
[89] 周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933−1943

Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933−1943
[90] Palmer K A, Bollas G M. Optimal sensor selection for active fault diagnosis using test information criteria. IFAC-PapersOnline, 2019, 52(1): 382−387 doi: 10.1016/j.ifacol.2019.06.092
[91] Martin-Casas M, Mesbah A. Active fault diagnosis for stochastic nonlinear systems: Online probabilistic model discrimination. IFAC-PapersOnLine, 2018, 51(18): 702−707 doi: 10.1016/j.ifacol.2018.09.281
[92] Blackmore L, Williams B. Finite horizon control design for optimal model discrimination. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005. Seville Spain: IEEE, 2005. 3795−3802