[1] 徐宁, 洪先龙.超大规模集成电路物理设计理论与方法.清华大学出版社, 2009.

Xu Ning, Hong Xian-Long. Very large scale integration physical design theory and method. Tsinghua University Press, 2009.
[2] Zhang Y, Xu Y, Chu C. Fastroute 3.0: a fast and high quality global router based on virtual capacity. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design. New York, USA: IEEE, 2008. 344-349
[3] Roy A J, Markov I L. High-performance routing at the nanometer scale. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2008, 27(6): 1066-1077 doi: 10.1109/TCAD.2008.923255
[4] Moffitt M D. Maizerouter: Engineering an effective global router. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2008, 27(11): 2017-2026 doi: 10.1109/TCAD.2008.2006082
[5] Ozdal M M, Wong M D F. Archer: A history-based global routing algorithm. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28(4): 528-540 doi: 10.1109/TCAD.2009.2013991
[6] Chang Y J, Lee Y T, Gao J R, Wu P C, Wang T C. NTHU-Route 2.0: A robust global router for modern designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, 29(12): 1931-1944 doi: 10.1109/TCAD.2010.2061590
[7] Held S, Muller D, Rotter D, Scheifele R, Traub V, Vygen J. Global routing with timing constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(2): 406-419 doi: 10.1109/TCAD.2017.2697964
[8] Dai K R, Liu W H, Li Y L. NCTU-GR: efficient simulated evolution-based rerouting and congestion-relaxed layer assignment on 3-D global routing. IEEE Transactions on very large scale integration (VLSI) systems, 2012, 20(3): 459-472 doi: 10.1109/TVLSI.2010.2102780
[9] Wu T H, Davoodi A, Linderoth J T. GRIP: scalable 3D global routing using integer programming. In: Proceedings of ACM/IEEE Design Automation Conference. New York, USA: IEEE, 2009. 320-325
[10] Cho M, Pan D Z. BoxRouter: A new global router based on box expansion and progressive ILP. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007, 26(12): 2130-2143 doi: 10.1109/TCAD.2007.907003
[11] Liu W H, Kao W C, Li Y L, Chao K Y. NCTU-GR 2.0: multithreaded collision-aware global routing with bounded-length maze routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(5): 709-722 doi: 10.1109/TCAD.2012.2235124
[12] Han Y, Ancajas D M, Chakraborty K, Roy S. Exploring high-throughput computing paradigm for global routing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(1): 155-167 doi: 10.1109/TVLSI.2012.2234489
[13] Teig S L. The X architecture: not your father's diagonal wiring. In: Proceedings of International workshop on System-level interconnect prediction. New York, USA: ACM, 2002. 33-37
[14] Dong J, Zhu H L, Xie M, Zeng X. Graph Steiner tree construction and its routing applications. In: Proceedings of IEEE 10th International Conference on ASIC. New York, USA: IEEE, 2013. 1-4
[15] Hung J H, Yeh Y K, Lin Y C, Huang H H, Hsieh T M. ECO-aware obstacle-avoiding routing tree algorithm. WSEAS Transactions on Circuits and Systems, 2010, 9(9): 567-576 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221981287/
[16] Liu G G, Chen G L, Guo W Z. DPSO based octagonal steiner tree algorithm for VLSI routing. In: Proceedings of IEEE 5th International Conference on Advanced Computational Intelligence. New York, USA: IEEE, 2012. 383-387
[17] Ho T Y. A performance-driven X-architecture router based on a novel multilevel framework. Integration, the VLSI Journal, 2009, 42(3): 400-408 doi: 10.1016/j.vlsi.2008.12.002
[18] Ho T Y. A performance-driven multilevel framework for the X-based full-chip router. In: Proceedings of International Workshop on Power and Timing Modeling, Optimization and Simulation. Berlin, Heidelberg: Springer, 2008. 209-218
[19] Hu Y, Jing T, Hong X, Hu X, Yan G. A routing paradigm with novel resources estimation and routability models for X-architecture based physical design. In: Proceedings of International Workshop on Embedded Computer Systems. Berlin, Heidelberg: Springer, 2005. 344-353
[20] Cao Z, Jing T, Hu Y, Shi Y, Hong X, Hu X, Yan G. DraXRouter: Global routing in X-architecture with dynamic resource assignment. In: Proceedings of the 2006 Asia and South Pacific Design Automation Conference. New York, USA: ACM, 2006. 618-623
[21] Liu G G, Guo W Z, Li R R, Niu Y Z, Chen G L. XGRouter: high-quality global router in X-architecture with particle swarm optimization. Frontiers of Computer Science, 2015, 9(4): 576-594 http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-jsjkx201504007
[22] ISPD 2007 Global Routing Contest [Online], available: http://www.sigda.org/ispd2007/contest.html, 2007
[23] Liu G G, Huang X, Guo W Z, Niu Y Z, Chen G L. Multilayer obstacle-avoiding X-architecture Steiner minimal tree construction based on particle swarm optimization. IEEE Transactions on Cybernetics, 2015, 45(5): 989-1002 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d6b5eb99a0190723fcec4d0ce6de9cb3
[24] ISPD 1998 Global Routing Benchmark Suite [Online], available: http://cseweb.ucsd.edu/kastner/research/labyrinth/, 1998
[25] Kennedy J, Eberhart R C. A discrete binary version of the particle swarm optimization algorithm. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. New York, USA: IEEE, 1997. 4104-4109
[26] Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 2002, 1(2-3): 235-306
[27] Pan Q K, Tasgetiren M F, Liang Y C. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Computers & Operations Research, 2008, 35(9): 2807-2839 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f0ae38a762e2dd59c2fdc4318af860e1
[28] Guo W Z, Liu G G, Chen G L, Peng S J. A hybrid multi-objective PSO algorithm with local search strategy for VLSI partitioning. Frontiers of Computer Scienceh, 2014, 8(2): 203-216 http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-jsjkx201402004
[29] Huang X, Guo W Z, Liu G G, Chen G L. FH-OAOS: a fast 4-step heuristic for obstacle-avoiding octilinear Steiner tree construction. ACM Transactions on Design Automation of Electronic Systems, 2016, 21(3): 48
[30] Huang X, Guo W Z, Liu G G, Chen G L. MLXR: multi-layer obstacle-avoiding X-architecture Steiner tree construction for VLSI routing. Science China Information Sciences, 2017, 60(3): 19102 doi: 10.1007/s11432-015-0850-4?slug=abstract
[31] 王东风, 孟丽.粒子群优化算法的性能分析和参数选择.自动化学报, 2016, 42(10): 1552-1561 doi: 10.16383/j.aas.2016.c150774

Wang Dong-Feng, Meng Li. Performance analysis and parameter selection of PSO algorithms. Acta Automatica Sinica, 2016, 42(10): 1552-1561 doi: 10.16383/j.aas.2016.c150774
[32] 吕柏权, 张静静, 李占培, 刘廷章.基于变换函数与填充函数的模糊粒子群优化算法.自动化学报, 2018, 44(1): 74-86 doi: 10.16383/j.aas.2018.c160547

Lv Bai-Quan, Zhang Jing-Jing, Li Zhan-Pei, Liu Ting-Zhang. Fuzzy partical swarm optimization based on filled function and transformation function. Acta Automatica Sinica, 2018, 44(1): 74-86 doi: 10.16383/j.aas.2018.c160547
[33] Zhang W, Zhang H, Liu J, Li K, Yang D, Tian H. Weather prediction with multiclass support vector machines in the fault detection of photovoltaic system. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3): 520-525 doi: 10.1109/JAS.2017.7510562
[34] Han Z, Zhao J, Wang W. An optimized oxygen system scheduling with electricity cost consideration in steel industry. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2): 216-222 doi: 10.1109/JAS.2017.7510439
[35] Tang Y, Luo C, Yang J, He H. A chance constrained optimal reserve scheduling approach for economic dispatch considering wind penetration. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2): 186-194 doi: 10.1109/JAS.2017.7510499
[36] Rudolph G. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 1994, 5(1): 96-101
[37] Lv H, Zheng J, Wu J, Zhou C, Li K. The convergence analysis of genetic algorithm based on space mating. In: Proceedings of IEEE 5th International Conference on Natural Computation. New York, USA: IEEE, 2009. 557-562