[1] 宋贺达, 周平, 王宏, 柴天佑.高炉炼铁过程多元铁水质量非线性子空间建模及应用.自动化学报, 2016, 42(11): 1664-1679 doi: 10.16383/j.aas.2016.c150819

Song He-Da, Zhou Ping, Wang Hong, Chai Tian-You. Nonlinear subspace modeling of multivariate molten iron quality in blast furnace ironmaking and its application. Acta Automatica Sinica, 2016, 42(11): 1664-1679 doi: 10.16383/j.aas.2016.c150819
[2] Zhou P, Guo D W, Wang H, Chai T Y. Data-driven robust M-LS-SVR-based NARX modeling for estimation and control of molten iron quality indices in blast furnace ironmaking. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9): 4007-4021 doi: 10.1109/TNNLS.2017.2749412
[3] Gao C H, Jian L, Luo S H. Modeling of the thermal state change of blast furnace hearth with support vector machines. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1134-1145 doi: 10.1109/TIE.2011.2159693
[4] Kuang S B, Li Z Y, Yan D L, Qi Y H, Yu A B. Numerical study of hot charge operation in ironmaking blast furnace. Minerals Engineering, 2014, 63: 45-56 doi: 10.1016/j.mineng.2013.11.002
[5] 周平, 张丽, 李温鹏, 戴鹏, 柴天佑.集成自编码与PCA的高炉多元铁水质量随机权神经网络建模.自动化学报, 2018, 44(10): 1799-1811 doi: 10.16383/j.aas.2018.c170299

Zhou Ping, Zhang Li, Li Wen-Peng, Dai Peng, Chai Tian-You. Autoencoder and PCA based RVFLNs modeling for multivariate molten iron quality in blast furnace ironmaking. Acta Automatica Sinica, 2018, 44(10): 1799-1811 doi: 10.16383/j.aas.2018.c170299
[6] Jian L, Gao C H, Xia Z H. Constructing multiple kernel learning framework for blast furnace automation. IEEE Transactions on Automation Science and Engineering, 2012, 9(4): 763-777 doi: 10.1109/TASE.2012.2211100
[7] Gao C H, Ge Q H, Jian L. Rule extraction from fuzzy-based blast furnace SVM multiclassifier for decision-making. IEEE Transactions on Fuzzy Systems, 2014, 22(3): 586-596 doi: 10.1109/TFUZZ.2013.2269145
[8] 蒋朝辉, 董梦林, 桂卫华, 阳春华, 谢永芳.基于Bootstrap的高炉铁水硅含量二维预报.自动化学报, 2016, 42(5): 715-723 doi: 10.16383/j.aas.2016.c150574

Jiang Zhao-Hui, Dong Meng-Lin, Gui Wei-Hua, Yang Chun-Hua, Xie Yong-Fang. Two-dimensional prediction for silicon content of hot metal of blast furnace based on Bootstrap. Acta Automatica Sinica, 2016, 42(5): 715-723 doi: 10.16383/j.aas.2016.c150574
[9] de Castro J A, Nogami H, Yagi J I. Three-dimensional multiphase mathematical modeling of the blast furnace based on the multifluid model. ISIJ International, 2002, 42(1): 44-52 doi: 10.2355/isijinternational.42.44
[10] de Castro J A, Nogami H, Yagi J I. Transient mathematical model of blast furnace based on multi-fluid concept, with application to high PCI operation. ISIJ International, 2000, 40(7): 637-646 doi: 10.2355/isijinternational.40.637
[11] 储满生, 王宏涛, 柳政根, 唐珏.高炉炼铁过程数学模拟的研究进展.钢铁, 2014, 49(11): 1-8 doi: 10.3969/j.issn.1006-6764.2014.11.001

Chu Man-Sheng, Wang Hong-Tao, Liu Zheng-Gen, Tang Jue. Research progress on mathematical modeling of blast furnace ironmaking process. Iron and Steel, 2014, 49(11): 1-8 doi: 10.3969/j.issn.1006-6764.2014.11.001
[12] Lvanov E B, Klimovitskii M D, Anisimov E F. Expert system for blast-furnace operators. Metallurgist, 2011, 54(11-12): 730-736 doi: 10.1007/s11015-011-9366-x
[13] Liu J K, Wang S Q. Construction of the inference engine of blast furnace expert system. Journal of Iron and Steel Research, International, 1998, 5(2): 22-27 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d63816e95b6e5b4ec6c58e1412491df1
[14] Shi L, Li Z L, Li J P. Model of hot metal silicon content in blast furnace based on principal component analysis application and partial least square. Journal of Iron and Steel Research, International, 2011, 18(10): 13-16 doi: 10.1016/S1006-706X(12)60015-6
[15] Saxén H, Gao C H, Gao Z W. Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace -- a review. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2213-2225 doi: 10.1109/TII.2012.2226897
[16] Yuan M, Zhou P, Li M L, Li R F, Wang H, Chai T Y. Intelligent multivariable modeling of blast furnace molten iron quality based on dynamic AGA-ANN and PCA. Journal of Iron and Steel Research, International, 2015, 22(6): 487-495 doi: 10.1016/S1006-706X(15)30031-5
[17] 王炜, 陈畏林, 叶勇, 徐智慧, 贾斌.神经网络在高炉铁水硫含量预报中的应用.钢铁, 2006, 41(10): 19-22 http://d.old.wanfangdata.com.cn/Periodical/gt200610004

Wang Wei, Chen Wei-Lin, Ye Yong, Xu Zhi-Hui, Jia Bin. Application of neural network to predict sulphur content in hot metal. Iron and Steel, 2006, 41(10): 19-22 http://d.old.wanfangdata.com.cn/Periodical/gt200610004
[18] Yan W W, Tang D, Lin Y J. A data-driven soft sensor modeling method based on deep learning and its application. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4237-4245 doi: 10.1109/TIE.2016.2622668
[19] Ma J M, Jiang H C, Huang K Z, Bi Z Q, Man K L. Novel field-support vector regression-based soft sensor for accurate estimation of solar irradiance. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(12): 3183-3191 doi: 10.1109/TCSI.2017.2746091
[20] Zhou P, Yuan M, Wang H, Chai T Y. Data-driven dynamic modeling for prediction of molten iron silicon content using ELM with self-feedback. Mathematical Problems in Engineering, 2015, 2015: Article ID 326160
[21] Zhou P, Yuan M, Wang H, Wang Z, Chai T Y. Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections. Information Sciences, 2015, 325: 237-255 doi: 10.1016/j.ins.2015.07.002
[22] Sargin M E, Yemez Y, Erzin E, Tekalp A M. Audiovisual synchronization and fusion using canonical correlation analysis. IEEE Transactions on Multimedia, 2007, 9(7): 1396-1403 doi: 10.1109/TMM.2007.906583
[23] Pao Y H, Takefuji Y. Functional-link net computing: theory, system architecture, and functionalities. Computer, 1992, 25(5): 76-79 doi: 10.1109/2.144401
[24] Igelnik B, Pao Y H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Transactions on Neural Networks, 1995, 6(6): 1320-1329 doi: 10.1109/72.471375
[25] Pao Y H, Park G H, Sobajic D J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing, 1994, 6(2): 163-180 doi: 10.1016/0925-2312(94)90053-1
[26] Scardapane S, Wang D H, Panella M, Uncini A. Distributed learning for random vector functional-link networks. Information Sciences, 2015, 301: 271-284 doi: 10.1016/j.ins.2015.01.007
[27] Zhang L, Suganthan P N. A comprehensive evaluation of random vector functional link networks. Information Sciences, 2016, 367-368: 1094-1105 doi: 10.1016/j.ins.2015.09.025
[28] Schmidt W F, Kraaijveld M A, Duin R P W. Feedforward neural networks with random weights. In: Proceedings of 1992 Pattern Recognition Conference B: Pattern Recognition Methodology and Systems. The Hague: IEEE, 1992. 1-4
[29] Huber P J, Ronchetti E M. Robust Statistics (Second Edition). Hoboken, New Jersey: John Wiley & Sons, 2009.
[30] Valdora M, Yohai V J. Robust estimators for generalized linear models. Journal of Statistical Planning and Inference, 2014, 146: 31-48 doi: 10.1016/j.jspi.2013.09.016
[31] Fan J, Yan A L, Xiu N H. Asymptotic properties for M-estimators in linear models with dependent random errors. Journal of Statistical Planning and Inference, 2014, 148: 49-66 doi: 10.1016/j.jspi.2013.12.005
[32] Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 2010, 33(1): 1-22 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_81a46bf667066119552ea0da1acfb673
[33] Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(2): 301-320 doi: 10.1111/j.1467-9868.2005.00503.x