[1] Fleming R W. Material perception. Annual Review of Vision Science, 2017, 3(1):365-388 doi: 10.1146/annurev-vision-102016-061429
[2] 仲训杲, 徐敏, 仲训昱, 彭侠夫.基于多模特征深度学习的机器人抓取判别方法.自动化学报, 2016, 42(7):1022-1029 http://www.aas.net.cn/CN/abstract/abstract18893.shtml

Zhong Xun-Gao, Xu Min, Zhong Xun-Yu, Peng Xia-Fu. Multimodal features deep learning for robotic potential grasp recognition. Acta Automatica Sinica, 2016, 42(7):1022-1029 http://www.aas.net.cn/CN/abstract/abstract18893.shtml
[3] 贾丙西, 刘山, 张凯祥, 陈剑.机器人视觉伺服研究进展:视觉系统与控制策略.自动化学报, 2015, 41(5):861-873 http://www.aas.net.cn/CN/abstract/abstract18661.shtml

Jia Bing-Xi, Liu Shan, Zhang Kai-Xiang, Chen Jian. Survey on robot visual servo control:Vision system and control strategies. Acta Automatica Sinica, 2015, 41(5):861-873 http://www.aas.net.cn/CN/abstract/abstract18661.shtml
[4] Khan E A, Reinhard E, Fleming R W, Bülthofff H H. Image-based material editing. ACM Transactions on Graphics, 2006, 25(3):654-663 doi: 10.1145/1141911
[5] Boyadzhiev I, Bala K, Paris S, Adelson E. Band-sifting decomposition for image-based material editing. ACM Transactions on Graphics, 2015, 34(5):163-179 http://cn.bing.com/academic/profile?id=29645f175afc7d4b468abb4ee5677e55&encoded=0&v=paper_preview&mkt=zh-cn
[6] 刘昊, 李哲, 石晶, 辛敏思, 蔡红星, 高雪, 谭勇.基于卷积神经网络的材质分类识别研究.激光与红外, 2017, 47(8):1024-1028 doi: 10.3969/j.issn.1001-5078.2017.08.019

Liu Hao, Li Zhe, Shi Jing, Xin Min-Si, Cai Hong-Xing, Gao Xue, Tan Yong. Study on classification and recognition of materials based on convolutional neural network. Laser & Infrared, 2017, 47(8):1024-1028 doi: 10.3969/j.issn.1001-5078.2017.08.019
[7] 李婉婉.基于卷积神经网络和集成学习的材质识别和分割方法研究[硕士学位论文], 北京交通大学, 中国, 2018

Li Wan-Wan. Ensemble Learning for Material Recognition and Segmentation with Convolutional Neural Networks[Master thesis], Beijing Jiaotong University, China, 2018
[8] 郑军庭, 李建, 李建勋.径向基函数神经网络在超宽带探地雷达目标材质识别中的应用.上海交通大学学报, 2006, 40(1):98-102 doi: 10.3321/j.issn:1006-2467.2006.01.023

Zheng Jun-Ting, Li Jian, Li Jian-Xun. The application of RBF neural network in material recognition ultra wideband ground penetrating radar. Journal of Shanghai Jiaotong University, 2006, 40(1):98-102 doi: 10.3321/j.issn:1006-2467.2006.01.023
[9] Tang Y C, Salakhutdinov R, Hinton G. Deep lambertian networks. In: Proceedings of the 2012 International Conference on Machine Learning. Edinburgh, Scotland: ACM, 2012. 1623-1630
[10] Richter S R, Roth S. Discriminative shape from shading in uncalibrated illumination. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 1128-1136
[11] Zhou T H, Krahenbuhl P, Efros A A. Learning data-driven reflectance priors for intrinsic image decomposition. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 3469-3477
[12] Narihira T, Maire M, Yu S X. Direct intrinsics: learning albedo-shading decomposition by convolutional regression. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 2992-3001
[13] Kulkarni T D, Whitney W F, Kohli P, Tenenbaum J. Deep convolutional inverse graphics network. In: Proceedings of the 2015 Annual Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2015. 2539-2547
[14] Rematas K, Ritschel T, Fritz M, Gavves E, Tuytelaars T. Deep reflectance maps. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 4508-4516
[15] Liu G, Ceylan D, Yumer E, Yang J M, Lien J M. Material editing using a physically based rendering network. In: Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 2261-2269
[16] Zhu J Y, Park T, Isola P, Efros A A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 2223-2232
[17] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the 2014 Annual Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014. 2672-2680
[18] 王坤峰, 苟超, 段艳杰, 林懿伦, 郑心湖, 王飞跃.基于多模特征深度学习的机器人抓取判别方法.自动化学报, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract18893.shtml

Wang Kun-Feng, Gou Chao, Duan Yan-Jie, Lin Yi-Lun, Zheng Xin-Hu, Wang Fei-Yue. Generative adversarial networks:the state of the art and beyond. Acta Automatica Sinica, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract18893.shtml
[19] 姚乃明, 郭清沛, 乔逢春, 陈辉, 王宏安.基于生成式对抗网络的鲁棒人脸表情识别.自动化学报, 2018, 44(5):865-877 http://www.aas.net.cn/CN/abstract/abstract19278.shtml

Yao Nai-Ming, Guo Qing-Pei, Qiao Feng-Chun, Chen Hui, Wang Hong-An. Robust facial expression recognition with generative adversarial networks. Acta Automatica Sinica, 2018, 44(5):865-877 http://www.aas.net.cn/CN/abstract/abstract19278.shtml
[20] 唐贤伦, 杜一铭, 刘雨微, 李佳歆, 马艺玮.基于条件深度卷积生成对抗网络的图像识别方法.自动化学报, 2018, 44(5):855-864 http://www.aas.net.cn/CN/abstract/abstract19277.shtml

Tang Xian-Lun, Du Yi-Ming, Liu Yu-Wei, Li Jia-Xin, Ma Yi-Wei. Image recognition with conditional deep convolutional generative adversarial networks. Acta Automatica Sinica, 2018, 44(5):855-864 http://www.aas.net.cn/CN/abstract/abstract19277.shtml
[21] Zhu Y, Zhang Z Y. Research on users' product material perception. In: Proceedings of the 2010 IEEE International Conference on Computer-aided Industrial Design & Conceptual Design. Wenzhou, China: IEEE, 2010. 1277-1280
[22] Land E H, McCann J J. Lightness and retinex theory. Journal of the Optical Society of America, 1971, 61(1):1-11 doi: 10.1364/JOSA.61.000001
[23] Fleming R W. Visual perception of materials and their properties. Vision Research, 2014, 94(1):62-75 http://cn.bing.com/academic/profile?id=47715d8615dc46b4bba0631eb9a4f529&encoded=0&v=paper_preview&mkt=zh-cn
[24] Zhang H, Dana K, Nishino K. Reflectance hashing for material recognition. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 3071-3080
[25] Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In: Proceedings of the 1998 IEEE International Conference on Computer Vision. Bombay, India: IEEE, 1998. 839-846
[26] Ben S M, Mitiche A, Ben A I. Multiregion image segmentation by parametric kernel graph cuts. IEEE Transactions on Image Processing, 2011, 20(2):545-557 doi: 10.1109/TIP.2010.2066982
[27] Ioffe S, Szegedy C. Batch normalization: Accelerating deepnetwork training by reducing internal covariate shift. In: Proceedings of the 2015 International Conference on Machine Learning. Lille, France: ACM, 2015. 448-456
[28] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 770-778
[29] Springenberg J T, Dosovitskiy A, Brox T, Riedmiller M. Striving for simplicity: The all convolutional net. In: Proceedings of the 2015 International Conference on Learning Representations. San Diego, CA, USA: IEEE, 2015. 1-14
[30] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution. In: Proceedings of the 2016 European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016. 694-711
[31] Gatys L A, Ecker A S, Bethge M. Image style transfer using convolutional neural networks. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 2414-2423
[32] Liao J, Yao Y, Yuan L, Hua G, Kang S B. Visual attribute transfer through deep image analogy. ACM Transactions on Graphics, 2017, 36(4):1-15 http://cn.bing.com/academic/profile?id=59eb0d68a1f11e6453c924a44f0fcd94&encoded=0&v=paper_preview&mkt=zh-cn
[33] Zhang L, Zhang L, Bovik A C. A feature-enriched completely blind image quality evaluator. IEEE Transactions on Image Processing, 2015, 24(8):2579-2591 doi: 10.1109/TIP.2015.2426416
[34] Ma K D, Liu W T, Zhang K, Duanmu Z F, Wang Z, Zuo W M. End-to-end blind image quality assessment using deep neural networks. IEEE Transactions on Image Processing, 2018, 27(3):1202-1213 doi: 10.1109/TIP.2017.2774045