[1] Chen C L, Zhu S Y, Guan X P, Shen X M. Wireless Sensor Networks:Distributed Consensus Estimation. Berlin, Germany:Springer, 2014.
[2] Murray R M. Control in an Information Rich World:Report of the Panel on Future Directions in Control, Dynamics, and Systems. Philadelphia, PA, USA:SIAM, 2003.
[3] Stenumgaard P, Chilo J, Ferrer-Coll J, Angskog P. Challenges and conditions for wireless machine-to-machine communications in industrial environments. IEEE Communications Magazine, 2013, 51(6):187-192 doi: 10.1109/MCOM.2013.6525614
[4] Kay S M. Fundamentals of Statistical Signal Processing:Estimation Theory. Upper Saddle River, NJ, USA:Prentice Hall, 1993.
[5] Ribeiro A, Schizas I D, Roumeliotis S I, Giannakis G B. Kalman filtering in wireless sensor networks. IEEE Control Systems Magazine, 2010, 30(2):66-86 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3fcdaf4feb31b2e2e1160401297e05cc
[6] Xiao L, Boyd S, Lall S. A scheme for robust distributed sensor fusion based on average consensus. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN). Boise, ID, USA: IEEE, 2005. 63-70
[7] Schizas I D, Ribeiro A, Giannakis G B. Consensus in Ad Hoc WSNs with noisy links, Part Ⅰ:distributed estimation of deterministic signals. IEEE Transactions on Signal Processing, 2008, 56(1):350-364 https://www.mendeley.com/catalogue/consensus-ad-hoc-wsns-noisy-links-part-i-distributed-estimation-deterministic-signals/
[8] Speranzon A, Fischione C, Johansson K H, Sangiovanni-Vincentelli A. A distributed minimum variance estimator for sensor networks. IEEE Journal on Selected Areas in Communications, 2008, 26(4):609-621 doi: 10.1109/JSAC.2008.080504
[9] Barbarossa S, Sardellitti S, Di Lorenzo P. Distributed detection and estimation in wireless sensor networks. Academic Press Library in Signal Processing: Communications and Radar Signal Processing. New York, USA: Elsevier, 2014. 329-408
[10] Cattivelli F S, Sayed A H. Diffusion LMS strategies for distributed estimation. IEEE Transactions on Signal Processing, 2010, 58(3):1035-1048 doi: 10.1109/TSP.2009.2033729
[11] Zhao X C, Tu S Y, Sayed A H. Diffusion adaptation over networks under imperfect information exchange and non-stationary data. IEEE Transactions on Signal Processing, 2012, 60(7):3460-3475 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226585347/
[12] Zhang Q, Zhang J F. Distributed parameter estimation over unreliable networks with Markovian switching topologies. IEEE Transactions on Automatic Control, 2012, 57(10):2545-2560 https://www.mendeley.com/catalogue/distributed-parameter-estimation-unreliable-networks-markovian-switching-topologies/
[13] 张强.不确定环境下多自主体系统的分布式估计与控制.中国科学:数学, 2013, 43(6):529-540 http://d.old.wanfangdata.com.cn/Thesis/Y2166224

Zhang Qiang. Distributed estimation and control of multi-agent systems in uncertain environment. Scientia Sinica Mathematica, 2013, 43(6):529-540 http://d.old.wanfangdata.com.cn/Thesis/Y2166224
[14] Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, 2005, 50(11):1698-1711 doi: 10.1109/TAC.2005.858689
[15] Xiao J J, Cui S G, Luo Z Q, Goldsmith A J. Power scheduling of universal decentralized estimation in sensor networks. IEEE Transactions on Signal Processing, 2006, 54(2):413-422 https://www.mendeley.com/catalogue/power-scheduling-universal-decentralized-estimation-sensor-networks/
[16] Xie S L, Li H R. Distributed LMS estimation over networks with quantised communications. International Journal of Control, 2013, 86(3):478-492 https://www.ingentaconnect.com/content/tandf/tcon/2013/00000086/00000003/art00010
[17] El Chamie M, Liu J, Başar T. Design and analysis of distributed averaging with quantized communication. IEEE Transactions on Automatic Control, 2016, 61(12):3870-3884 doi: 10.1109/TAC.2016.2530939
[18] Liu S, Li T, Xie L H, Fu M Y, Zhang J F. Continuous-time and sampled-data-based average consensus with logarithmic quantizers. Automatica, 2013, 49(11):3329-3336 https://www.mendeley.com/catalogue/continuoustime-sampleddatabased-average-consensus-logarithmic-quantizers/
[19] Li T, Fu M Y, Xie L H, Zhang J F. Distributed consensus with limited communication data rate. IEEE Transactions on Automatic Control, 2011, 56(2):279-292 https://ieeexplore.ieee.org/document/5482198/
[20] Zhu S Y, Soh Y C, Xie L H. Distributed parameter estimation with quantized communication via running average. IEEE Transactions on Signal Processing, 2015, 63(17):4634-4646 https://ieeexplore.ieee.org/document/7116612
[21] Zhu S Y, Liu S, Soh Y C, Xie L H. Performance analysis of averaging based distributed estimation algorithm with additive quantization model. Automatica, 2017, 80:95-101 https://dl.acm.org/citation.cfm?id=3085494
[22] Kar S, Moura J M F, Ramanan K. Distributed parameter estimation in sensor networks:nonlinear observation models and imperfect communication. IEEE Transactions on Information Theory, 2012, 58(6):3575-3605 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0809.0009
[23] Zhu S Y, Chen C L, Ma X L, Yang B, Guan X P. Consensus based estimation over relay assisted sensor networks for situation monitoring. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(2):278-291 doi: 10.1109/JSTSP.2014.2375851
[24] Zhu S Y, Chen C L, Li W S, Yang B, Guan X P. Distributed optimal consensus filter for target tracking in heterogeneous sensor networks. IEEE Transactions on Cybernetics, 2013, 43(6):1963-1976 https://www.mendeley.com/catalogue/distributed-optimal-consensus-filter-target-tracking-heterogeneous-sensor-networks/
[25] Zhu S Y, Soh Y C, Xie L H. Distributed inference for relay-assisted sensor networks with intermittent measurements over fading channels. IEEE Transactions on Signal Processing, 2016, 64(3):742-756 https://ieeexplore.ieee.org/document/7296697
[26] Ali S, Fakoorian A, Taheri H. Optimum Reed-Solomon erasure coding in fault tolerant sensor networks. In: Proceedings of the 4th International Symposium on Wireless Communication Systems. Trondheim, Norway: IEEE, 2007. 6-10 https://www.mendeley.com/catalogue/optimum-reedsolomon-erasure-coding-fault-tolerant-sensor-networks/
[27] Marina M K, Das S R. Ad hoc on-demand multipath distance vector routing. Wireless Communications and Mobile Computing, 2006, 6(7):969-988 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023629265/
[28] Villaverde B C, Rea S, Pesch D. InRout:a QoS aware route selection algorithm for industrial wireless sensor networks. Ad Hoc Networks, 2012, 10(3):458-478 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226199838/
[29] Heo J, Hong J M, Cho Y. EARQ:energy aware routing for real-time and reliable communication in wireless industrial sensor networks. IEEE Transactions on Industrial Informatics, 2009, 5(1):3-11 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234349976/
[30] Liu Y H, Zhu Y M, Ni L, Xue G T. A reliability-oriented transmission service in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(12):2100-2107 https://ieeexplore.ieee.org/document/5740874
[31] Shi L, Epstein M, Nurray R M. Kalman filtering over a packet-dropping network:a probabilistic perspective. IEEE Transactions on Automatic Control, 2010, 55(3):594-604 doi: 10.1109-TAC.2009.2039236/
[32] You K Y, Fu M Y, Xie L H. Mean square stability for Kalman filtering with Markovian packet losses. Automatica, 2011, 47(12):2647-2657 https://www.sciencedirect.com/science/article/pii/S0005109811004559
[33] Quevedo D E, Ahlen A, Johansson K H. State estimation over sensor networks with correlated wireless fading channels. IEEE Transactions on Automatic Control, 2013, 58(3):581-593 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1308.1725
[34] Xia M, Gupta V, Antsaklis P J. Networked state estimation over a shared communication medium. IEEE Transactions on Automatic Control, 2017, 62(4):1729-1741
[35] Mamduhi M H, Molin A, Tolić D, Hirche S. Error-dependent data scheduling in resource-aware multi-loop networked control systems. Automatica, 2017, 81:209-216
[36] Sinopoli B, Schenato L, Franceschetti M, Poolla K, Jordan M I, Sastry S S. Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control, 2004, 49(9):1453-1464 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1005.2442
[37] Kluge S, Reif K, Brokate M. Stochastic stability of the extended Kalman filter with intermittent observations. IEEE Transactions on Automatic Control, 2010, 55(2):514-518 https://ieeexplore.ieee.org/document/5378505
[38] 游科友, 谢立华.网络控制系统的最新研究综述.自动化学报, 2013, 39(2):101-118 http://www.aas.net.cn/CN/abstract/abstract17806.shtml

You Ke-You, Xie Li-Hua. Survey of recent progress in networked control systems. Acta Automatica Sinica, 2013, 39(2):101-118 http://www.aas.net.cn/CN/abstract/abstract17806.shtml
[39] Cao X H, Cheng P, Chen J M, Ge S S, Cheng Y, Sun Y X. Cognitive radio based state estimation in cyber-physical systems. IEEE Journal on Selected Areas in Communications, 2014, 32(3):489-502 doi: 10.1109/JSAC.2014.1403002
[40] Calvo-Fullana M, Antón-Haro C, Matamoros J, Ribeiro A. Random access communication for wireless control systems with energy harvesting sensors. arXiv: 1801.10141, 2018. https://arxiv.org/abs/1801.10141
[41] Leong A, Quevedo D E. Kalman filtering with relays over wireless fading channels. IEEE Transactions on Automatic Control, 2016, 61(6):1643-1648 doi: 10.1109/TAC.2015.2478129
[42] Cheng P, Qi Y F, Xin K F, Chen J M, Xie L H. Energy-efficient data forwarding for state estimation in multi-hop wireless sensor networks. IEEE Transactions on Automatic Control, 2016, 61(5):1322-1327 https://ieeexplore.ieee.org/document/7172467
[43] Cao X H, Cheng P, Chen J M, Sun Y X. An online optimization approach for control and communication codesign in networked cyber-physical systems. IEEE Transactions on Industrial Informatics, 2013, 9(1):439-450 doi: 10.1109/TII.2012.2216537
[44] Demirel B, Zou Z H, Soldati P, Johansson M. Modular design of jointly optimal controllers and forwarding policies for wireless control. IEEE Transactions on Automatic Control, 2014, 59(12):3252-3265 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1204.3100
[45] Gatsis K, Pajic M, Ribeiro A, Pappas G J. Opportunistic control over shared wireless channels. IEEE Transactions on Automatic Control, 2015, 60(12):3140-3155 doi: 10.1109/TAC.2015.2416922
[46] Knorn S, Dey S. Optimal energy allocation for linear control with packet loss under energy harvesting constraints. Automatica, 2017, 77:259-267 https://www.sciencedirect.com/science/article/pii/S0005109816304794
[47] Schenato L, Sinopoli B, Franceschetti M, Poolla K, Sastry S S. Foundations of control and estimation over lossy networks. Proceedings of the IEEE, 2007, 95(1):163-187 https://ieeexplore.ieee.org/document/4118476
[48] Lyu L, Chen C L, Hua C Q, Guan X P. State estimation oriented reliability enhancement with cooperative transmission in industrial CPSs. In: Proceedings of the 2016 IEEE Global Communications Conference. Washington, DC, USA: IEEE, 2016. 1-6 https://ieeexplore.ieee.org/document/7842295
[49] Tan K T, Peng X Y, So P L, Chu Y C, Chen M Z Q. Centralized control for parallel operation of distributed generation inverters in microgrids. IEEE Transactions on Smart Grid, 2012, 3(4):1977-1987 https://ieeexplore.ieee.org/document/6268310
[50] Bakule L. Decentralized control:an overview. Annual Reviews in Control, 2008, 32(1):87-98 doi: 10.1016/j.arcontrol.2008.03.004
[51] Hua C C, Zhang L L, Guan X P. Robust Control for Nonlinear Time-Delay Systems. Singapore, Singapore:Springer, 2018.
[52] Hua C C, Guan X P, Shi P. Robust backstepping control for a class of time delayed systems. IEEE Transactions on Automatic Control, 2005, 50(6):894-899 https://ieeexplore.ieee.org/document/1440580
[53] Hua C C, Feng G, Guan X P. Robust controller design of a class of nonlinear time delay systems via backstepping method. Automatica, 2008, 44:567-573 doi: 10.1016/j.automatica.2007.06.008
[54] Šiljak D D. Decentralized Control of Complex Systems. Boston, USA:Academic Press, 1991.
[55] Mahmoud M S, Bingulac S. Robust design of stabilizing controllers for interconnected time-delay systems. Automatica, 1998, 34(6):795-800 https://dl.acm.org/citation.cfm?id=292993
[56] Xie S L, Xie L H. Stabilization of a class of uncertain large-scale stochastic systems with time delays. Automatica, 2000, 36(1):161-167 https://www.sciencedirect.com/science/article/pii/S0005109899001478
[57] Yan X G, Spurgeon S K, Edwards C. Decentralised stabilisation for nonlinear time delay interconnected systems using static output feedback. Automatica, 2013, 49(2):633-641 https://dl.acm.org/citation.cfm?id=2425508
[58] Hua C C, Guan X P. Output feedback stabilization for time-delay nonlinear interconnected systems using neural networks. IEEE Transactions on Neural Networks, 2008, 19(4):673-688 https://www.ncbi.nlm.nih.gov/pubmed/18390312
[59] Zhou J. Decentralized adaptive control for large-scale time-delay systems with dead-zone input. Automatica, 2008, 44(7):1790-1799
[60] Niemeyer G, Slotine J J E. Stable adaptive teleoperation. IEEE Journal of Oceanic Engineering, 1991, 16(1):152-162 doi: 10.1109/48.64895
[61] Nuño E, Ortega R, Barabanov N, Basañez L. A globally stable PD controller for bilateral teleoperators. IEEE Transactions on Robotics, 2008, 24(3):753-758 doi: 10.1109/TRO.2008.921565
[62] Hua C C, Liu X P. Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays. IEEE Transactions on Robotics, 2010, 26(5):925-932 https://ieeexplore.ieee.org/document/5510175
[63] Tian D P, Yashiro D, Ohnishi K. Wireless haptic communication under varying delay by switching-channel bilateral control with energy monitor. IEEE/ASME Transactions on Mechatronics, 2012, 17(3):488-498 https://ieeexplore.ieee.org/document/6162986
[64] Yan J, Wan Y, Luo X Y, Chen C L, Hua C C, Guan X P. Formation control of teleoperating cyber-physical system with time delay and actuator saturation. IEEE Transactions on Control Systems Technology, 2018, 26(4):1458-1467 https://ieeexplore.ieee.org/document/7947157
[65] Lyu L, Chen C L, Yan J, Lin F L, Hua C Q, Guan X P. State estimation oriented wireless transmission for ubiquitous monitoring in industrial cyber-physical systems. IEEE Transactions on Emerging Topics in Computing, 2016, DOI: 10.1109/tetc.2016.2573719
[66] Lyu L, Chen C L, Zhu S Y, Guan X P. 5G enabled codesign of energy-efficient transmission and estimation for industrial IoT systems. IEEE Transactions on Industrial Informatics, 2018, 14(6):2690-2704 https://ieeexplore.ieee.org/document/8272467
[67] Lyu L, Chen C L, Hua C Q, Zhu S Y, Guan X P. Co-design of stabilisation and transmission scheduling for wireless control systems. IET Control Theory and Applications, 2017, 11(11):1767-1778 https://ieeexplore.ieee.org/document/7972804
[68] Zhu S Y, Chen C L, Guan X P. Sensor deployment for distributed estimation in heterogeneous wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 2012, 16(4):297-322
[69] Xue L, Guan X P, Liu Z X, Yang B. TREE:routing strategy with guarantee of QoS for industrial wireless sensor networks. International Journal of Communication Systems, 2014, 27(3):459-481 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200512013
[70] Barnwal R P, Bharti S, Misra S, Obaidat M S. UCGNet:wireless sensor network-based active aquifer contamination monitoring and control system for underground coal gasification. International Journal of Communication Systems, 2017, 30(1):e2852 doi: 10.1002/dac.2852#citedBy
[71] Chen C L, Yan J, Lu N, Wang Y Y, Yang X, Guan X P. Ubiquitous monitoring for industrial cyber-physical systems over relay-assisted wireless sensor networks. IEEE Transactions on Emerging Topics in Computing, 2015, 3(3):352-362