[1] Wolpaw J R, Birbaumer N, McFarland D J, Pfurtscheller G, Vaughan T M. Brain-computer interfaces for communication and control. Clinical Neurophysiology, 2002, 113(6):767-791 doi: 10.1016/S1388-2457(02)00057-3
[2] 王行愚, 金晶, 张宇, 王蓓.脑控:基于脑——机接口的人机融合控制.自动化学报, 2013, 39(3):208-221 http://www.aas.net.cn/CN/abstract/abstract17800.shtml

Wang Xing-Yu, Jin Jing, Zhang Yu, Wang Bei. Brain control:human-computer integration control based on brain-computer interface. Acta Automatica Sinica, 2013, 39(3):208-221 http://www.aas.net.cn/CN/abstract/abstract17800.shtml
[3] Iturrate I, Antelis J M, Kübler A, Minguez J. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Transactions on Robotics, 2009, 25(3):614-627 doi: 10.1109/TRO.2009.2020347
[4] 伏云发, 徐保磊, 李永程, 李洪谊, 王越超, 余正涛.基于运动相关皮层电位握力运动模式识别研究.自动化学报, 2014, 40(6):1045-1057 http://www.aas.net.cn/CN/abstract/abstract18374.shtml

Fu Yun-Fa, Xu Bao-Lei, Li Yong-Cheng, Li Hong-Yi, Wang Yue-Chao, Yu Zheng-Tao. Recognition of actual grip force movement modes based on movement-related cortical potentials. Acta Automatica Sinica, 2014, 40(6):1045-1057 http://www.aas.net.cn/CN/abstract/abstract18374.shtml
[5] 张毅, 杨柳, 李敏, 罗元.基于AR和SVM的运动想象脑电信号识别.华中科技大学学报(自然科学版), 2011, 39(S2):103-106 http://d.wanfangdata.com.cn/Conference/7642363

Zhang Yi, Yang Liu, Li Min, Luo Yuan. Recognition of motor imagery EEG based on AR and SVM. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(S2):103-106 http://d.wanfangdata.com.cn/Conference/7642363
[6] Hsu W Y. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features. Journal of Neuroscience Methods, 2010, 189(2):295-302 doi: 10.1016/j.jneumeth.2010.03.030
[7] 孙会文, 伏云发, 熊馨, 杨俊, 刘传伟, 余正涛.基于HHT运动想象脑电模式识别研究.自动化学报, 2015, 41(9):1686-1692 http://www.aas.net.cn/CN/abstract/abstract18742.shtml

Sun Hui-Wen, Fu Yun-Fa, Xiong Xin, Yang Jun, Liu Chuan-Wei, Yu Zheng-Tao. Identification of EEG induced by motor imagery based on Hilbert-Huang transform. Acta Automatica Sinica, 2015, 41(9):1686-1692 http://www.aas.net.cn/CN/abstract/abstract18742.shtml
[8] Reuderink B, Poel M. Robustness of the Common Spatial Patterns Algorithm in the BCI-pipeline. Centre for Telematics and Information Technology, University of Twente, Twente, Netherlands, 2008. https://research.utwente.nl/en/publications/robustness-of-the-common-spatial-patterns-algorithm-in-the-bci-pi
[9] Kang H, Nam Y, Choi S. Composite common spatial pattern for subject-to-subject transfer. IEEE Signal Processing Letters, 2009, 16(8):683-686 doi: 10.1109/LSP.2009.2022557
[10] Arvaneh M, Guan C T, Ang K K, Quek H C. Spatially sparsed common spatial pattern to improve BCI performance. In:Proceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Prague, Czech Republic:IEEE, 2011. 2412-2415 http://ieeexplore.ieee.org/document/5946970/
[11] Lotte F, Guan C. Regularizing common spatial patterns to improve BCI designs:unified theory and new algorithms. IEEE Transactions on Biomedical Engineering, 2011, 58(2):355-362 doi: 10.1109/TBME.2010.2082539
[12] Su Y X, Li Y L, Wang S J. Filter ensemble regularized common spatial pattern for EEG classification. In:Proceedings of the 7th International Conference on Digital Image Processing (ICDIP15). Los Angeles, USA:SPIE, 2015. Article No. 963124 http://proceedings.spiedigitallibrary.org/article.aspx?articleid=2389141
[13] Ang K K, Chin Z Y, Zhang H, Guan C T. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In:Proceedings of the 2008 IEEE International Joint Conference on Neural Networks, 2008. Hong Kong, China:IEEE, 2008. 2390-2397 https://www.mendeley.com/research-papers/filter-bank-common-spatial-pattern-fbcsp-braincomputer-interface-5/
[14] Data set IVa for the BCI competition Ⅲ[Online], available:http://www.bbci.de/competition/iii/, December 18, 2015
[15] Tangermann M, Müller K R, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller K J, Müller-Putz G R, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schlögl A, Vidaurre C, Waldert S, Blankertz B. Review of the BCI competition Ⅳ. Frontiers in Neuroscience, 2012, 6:Article No. 55 http://europepmc.org/articles/PMC3396284
[16] Bamdadian A, Guan C T, Ang K K, Xu J X. Online semi-supervised learning with KL distance weighting for motor imagery-based BCI. In:Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). San Diego, CA, USA:IEEE, 2012. 2732-2735 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6346529
[17] Long J Y, Li Y Q, Wang H T, Yu T Y, Pan J H, Li F. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(5):720-729 doi: 10.1109/TNSRE.2012.2197221
[18] Yoo J, Yan L, El-Damak D, Altaf M A B, Shoeb A H, Chandrakasan A P. An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor. IEEE Journal of Solid-State Circuits, 2013, 48(1):214-228 doi: 10.1109/JSSC.2012.2221220
[19] Neu D, Mairesse O, Verbanck P, Linkowski P, Le Bon O. Non-REM sleep EEG power distribution in fatigue and sleepiness. Journal of Psychosomatic Research, 2014, 76(4):286-291 doi: 10.1016/j.jpsychores.2014.02.002