[1] Chen B J, Wang Q N. Combining human volitional control with intrinsic controller on robotic prosthesis: a case study on adaptive slope walking. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan, Italy: IEEE, 2015. 4777-4780
[2] Cherelle P, Mathijssen G, Wang Q N, Vanderborght B, Lefeber D. Advances in propulsive bionic feet and their actuation principles. Advances in Mechanical Engineering, 2014, 2014: 984046 https://www.researchgate.net/publication/266384382_Review_Article_Advances_in_Propulsive_Bionic_Feet_and_Their_Actuation_Principles
[3] Meier M R, Hansen A H, Gard S A, McFadyen A K. Obstacle course: users' maneuverability and movement efficiency when using Otto Bock C-Leg, Otto Bock 3R60, and the CaTech SNS prosthetic knee joints. Journal of Rehabilitation Research and Development, 2012, 49(4): 583-596 doi: 10.1682/JRRD.2010.05.0094
[4] Hoover C D, Fulk G D, Fite K B. The design and initial experimental validation of an active myoelectric transfemoral prosthesis. Journal of Medical Devices, 2012, 6(1): 011005 doi: 10.1115/1.4005784
[5] 田彦涛, 孙中波, 李宏扬, 王静.动态双足机器人的控制与优化研究进展.自动化学报, 2016, 42(8): 1143-1157 http://www.aas.net.cn/CN/abstract/abstract18904.shtml

Tian Yan-Tao, Sun Zhong-Bo, Li Hong-Yang, Wang Jing. A review of optimal and control strategies for dynamic walking bipedal robots. Acta Automatica Sinica, 2016, 42(8): 1143-1157 http://www.aas.net.cn/CN/abstract/abstract18904.shtml
[6] Hoover C D, Fulk G D, Fite K B. Stair ascent with a powered transfemoral prosthesis under direct myoelectric control. IEEE/ASME Transactions on Mechatronics, 2013, 18(3): 1191-1200 doi: 10.1109/TMECH.2012.2200498
[7] Kim D H, Cho C H, Ryu J. Real-time locomotion mode recognition employing correlation feature analysis using EMG pattern. ETRI Journal, 2014, 36(1): 99-105 doi: 10.4218/etrij.14.0113.0064
[8] Zhang F, Huang H. Source selection for real-time user intent recognition toward volitional control of artificial legs. IEEE Journal of Biomedical and Health Informatics, 2013, 17(5): 907-914 doi: 10.1109/JBHI.2012.2236563
[9] Huang H, Zhang F, Hargrove L J, Dou Z, Rogers D R, Englehart K B. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Transactions on Biomedical Engineering, 2011, 58(10): 2867-2875 doi: 10.1109/TBME.2011.2161671
[10] 陈国兴, 耿艳利, 刘作军, 杨鹏.假肢跌倒预警中基于相关性分析的模糊自适应反馈调节.机器人, 2015, 37(6): 732-737, 747 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201506012.htm

Chen Guo-Xing, Geng Yan-Li, Liu Zuo-Jun, Yang Peng. Fuzzy adaptive feedback regulation for stumble pre-warning of lower limb prosthesis based on the correlation analysis. Robot, 2015, 37(6): 732-737, 747 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201506012.htm
[11] 赵丽娜, 刘作军, 苟斌, 杨鹏.基于隐马尔可夫模型的动力型下肢假肢步态预识别.机器人, 2014, 36(3): 337-341 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201403012.htm

Zhao Li-Na, Liu Zuo-Jun, Gou Bin, Yang Peng. Gait pre-recognition of dynamic lower limb prosthesis based on hidden Markov model. Robot, 2014, 36(3): 337-341 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201403012.htm
[12] Peng L, Hou Z G, Kasabov K, Hu J, Peng L, Wang W Q. sEMG-based torque estimation for robot-assisted lower limb rehabilitation. In: Proceedings of the 2015 International Joint Conference on Neural Networks. Ireland, County Kerry: IEEE, 2015. DOI: 10.1109/IJCNN.2015.7280449.
[13] 丁其川, 熊安斌, 赵新刚, 韩建达.基于表面肌电的运动意图识别方法研究及应用综述.自动化学报, 2016, 42(1): 13-25 http://www.aas.net.cn/CN/abstract/abstract18792.shtml

Ding Qi-Chuan, Xiong An-Bin, Zhao Xin-Gang, Han Jian-Da. A review on researches and applications of sEMG-based motion intent recognition methods. Acta Automatica Sinica, 2016, 42(1): 13-25 http://www.aas.net.cn/CN/abstract/abstract18792.shtml
[14] Vallery H, Burgkart R, Hartmann C, Mitternacht J, Riener R, Buss M. Complementary limb motion estimation for the control of active knee prostheses. Biomedizinische Technik. Biomedical Engineering, 2011, 56(1): 45-51 doi: 10.1515/bmt.2010.057
[15] 刘洪涛, 曹玉珍, 谢小波, 胡勇.表面肌电信号的时变AR模型参数评估肌疲劳程度的研究.中国生物医学工程学报, 2007, 26(4): 493-497 http://www.cnki.com.cn/Article/CJFDTOTAL-ZSWY200704002.htm

Liu Hong-Tao, Cao Yu-Zhen, Xie Xiao-Bo, Hu Yong. Estimation of muscle fatigue degree using time-varying autoregressive model parameter estimation of surface electromyography. Chinese Journal of Biomedical Engineering, 2007, 26(4): 493-497 http://www.cnki.com.cn/Article/CJFDTOTAL-ZSWY200704002.htm
[16] 张培林, 李胜.基于小波包变换和GA-PLS算法的故障特征选择方法.振动、测试与诊断, 2014, 34(2): 385-391 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201402035.htm

Zhang Pei-Lin, Li Sheng. Fault feature selection method based on wavelet and GA-PLS algorithm. Journal of Vibration, Measurement & Diagnosis, 2014, 34(2): 385-391 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201402035.htm
[17] Zhou S, Lawson D L, Morrison W E, Fairweather I. Electromechanical delay in isometric muscle contractions evoked by voluntary, reflex and electrical stimulation. European Journal of Applied Physiology and Occupational Physiology, 1995, 70(2): 138-145 doi: 10.1007/BF00361541
[18] Lawson B E, Varol H A, Huff A, Erdemir E, Goldfarb M. Control of stair ascent and descent with a powered transfemoral prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 21(3): 466-473 https://www.researchgate.net/publication/232699496_Control_of_Stair_Ascent_and_Descent_With_a_Powered_Transfemoral_Prosthesis
[19] Huang S, Ferris D P. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface. Journal of Neuroengineering and Rehabilitation, 2012, 9: 55. DOI: 10.1186/1743-0003-9-55
[20] Hargrove L J, Simon A M, Lipschutz R D, Finucane S B, Kuiken T A. Real-time myoelectric control of knee and ankle motions for transfemoral amputees. JAMA, 2011, 305(15): 1542-1544 doi: 10.1001/jama.2011.465
[21] Sagawa Y Jr, Turcot K, Armand S, Thevenon A, Vuillerme N, Watelain E. Biomechanics and physiological parameters during gait in lower-limb amputees: a systematic review. Gait & Posture, 2011, 33(4): 511-526 http://www.academia.edu/17420300/Biomechanics_and_physiological_parameters_during_gait_in_lower-limb_amputees_A_systematic_review