[1] Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 2012, 36(2): 220-234 doi: 10.1016/j.arcontrol.2012.09.004
[2] Gao Z W, Cecati C, Ding S X. A survey of fault diagnosis and fault-tolerant techniques——Part Ⅱ: fault diagnosis with knowledge-based and hybrid/active approaches. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3768-3774 https://www.researchgate.net/publication/277641711_A_Survey_of_Fault_Diagnosis_and_Fault-Tolerant_Techniques-Part_II_Fault_Diagnosis_With_Knowledge-Based_and_HybridActive_Approaches
[3] Yin S, Li X W, Gao H J, Kaynak O. Data-based techniques focused on modern industry: an overview. IEEE Transactions on Industrial Electronics, 2015, 62(1): 657-667 doi: 10.1109/TIE.2014.2308133
[4] Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Computers & Chemical Engineering, 2008, 32(1-2): 12-24
[5] Ge Z Q, Song Z H, Gao F R. Review of recent research on data-based process monitoring. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562 https://www.researchgate.net/publication/263974651_Review_of_Recent_Research_on_Data-Based_Process_Monitoring
[6] 周东华, 胡艳艳.动态系统的故障诊断技术.自动化学报, 2009, 35(6): 748-758 doi: 10.3724/SP.J.1004.2009.00748

Zhou Dong-Hua, Hu Yan-Yan. Fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2009, 35(6): 748-758 doi: 10.3724/SP.J.1004.2009.00748
[7] Qin S J, Zheng Y Y. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE Journal, 2013, 59(2): 496-504 doi: 10.1002/aic.v59.2
[8] Li B B, Morris A J, Martin E B. Generalized partial least squares regression based on the penalized minimum norm projection. Chemometrics and Intelligent Laboratory Systems, 2004, 72(1): 21-26 doi: 10.1016/j.chemolab.2004.01.026
[9] Ergon R. Reduced PCR/PLSR models by subspace projections. Chemometrics and Intelligent Laboratory Systems, 2006, 81(1): 68-73 doi: 10.1016/j.chemolab.2005.09.008
[10] Ding S X, Yin S, Peng K X, Hao H Y, Shen B. A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2239-2247 doi: 10.1109/TII.2012.2214394
[11] Yin S, Ding S X, Haghani A, Hao H Y, Zhang P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control, 2012, 22(9): 1567-1581 doi: 10.1016/j.jprocont.2012.06.009
[12] MacGregor J F, Jaeckle C, Kiparissides C, Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE Journal, 1994, 40(5): 826-838 doi: 10.1002/(ISSN)1547-5905
[13] Wold S. Exponentially weighted moving principal components analysis and projections to latent structures. Chemometrics and Intelligent Laboratory Systems, 1994, 23(1): 149-161 doi: 10.1016/0169-7439(93)E0075-F
[14] Li G, Qin S J, Zhou D H. Geometric properties of partial least squares for process monitoring. Automatica, 2010, 46(1): 204-210 doi: 10.1016/j.automatica.2009.10.030
[15] Negiz A, Çlinar A. Statistical monitoring of multivariable dynamic processes with state-space models. AIChE Journal, 1997, 43(8): 2002-2020 doi: 10.1002/(ISSN)1547-5905
[16] Russell E L, Chiang L H, Braatz R D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 81-93 doi: 10.1016/S0169-7439(00)00058-7
[17] Juricek B C, Seborg D E, Larimore W E. Fault detection using canonical variate analysis. Industrial & Engineering Chemistry Research, 2004, 43(2): 458-474 https://www.researchgate.net/publication/231371151_Fault_Detection_Using_Canonical_Variate_Analysis
[18] Stubbs S, Zhang J, Morris J. Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach. Computers & Chemical Engineering, 2012, 41: 77-87 http://eprint.ncl.ac.uk/pub_details2.aspx?pub_id=184088
[19] Chen Z W, Ding S X, Zhang K, Li Z B, Hu Z K. Canonical correlation analysis-based fault detection methods with application to alumina evaporation process. Control Engineering Practice, 2016, 46: 51-58 doi: 10.1016/j.conengprac.2015.10.006
[20] Barker M, Rayens W. Partial least squares for discrimination. Journal of Chemometrics, 2003, 17(3): 166-173 doi: 10.1002/(ISSN)1099-128X
[21] De Jong S. PLS fits closer than PCR. Journal of Chemometrics, 1993, 7(6): 551-557 doi: 10.1002/(ISSN)1099-128X
[22] Zhang K, Hao H Y, Chen Z W, Ding S X, Peng K X. A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches. Journal of Process Control, 2015, 33: 112-126 doi: 10.1016/j.jprocont.2015.06.007
[23] Peng K X, Zhang K, Dong J, You B. Quality-relevant fault detection and diagnosis for hot strip mill process with multi-specification and multi-batch measurements. Journal of the Franklin Institute, 2015, 352(3): 987-1006 doi: 10.1016/j.jfranklin.2014.12.002
[24] Pudil P, Novovičová J, Kittler J. Floating search methods in feature selection. Pattern Recognition Letters, 1994, 15(11): 1119-1125 doi: 10.1016/0167-8655(94)90127-9
[25] Abrahamsson C, Johansson J, Sparén A, Lindgren F. Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets. Chemometrics and Intelligent Laboratory Systems, 2003, 69(1-2): 3-12 doi: 10.1016/S0169-7439(03)00064-9
[26] Wold S, Antti H, Lindgren F, Öhman J. Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1-2): 175-185 doi: 10.1016/S0169-7439(98)00109-9
[27] Fearn T. On orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems, 2000, 50(1): 47-52 doi: 10.1016/S0169-7439(99)00045-3
[28] Choi S W, Lee I B. Multiblock PLS-based localized process diagnosis. Journal of Process Control, 2005, 15(3): 295-306 doi: 10.1016/j.jprocont.2004.06.010
[29] Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring. AIChE Journal, 2010, 56(1): 168-178 https://www.researchgate.net/publication/229883646_Total_projection_to_latent_structures_for_process_monitoring
[30] Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch processes. Technometrics, 1995, 37(1): 41-59 doi: 10.1080/00401706.1995.10485888
[31] Li G, Qin S J, Zhou D H. Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models. Industrial & Engineering Chemistry Research, 2010, 49(19): 9175-9183 https://www.researchgate.net/publication/231391323_Output_Relevant_Fault_Reconstruction_and_Fault_Subspace_Extraction_in_Total_Projection_to_Latent_Structures_Models
[32] Zhao C H, Sun Y X. The multi-space generalization of total projection to latent structures (MsT-PLS) and its application to online process monitoring. In: Proceedings of the 10th IEEE International Conference on Control and Automation. Hangzhou, China: IEEE, 2013. 1441-1446
[33] Yin S, Wei Z L, Gao H J, Peng K X. Data-driven quality related prediction and monitoring. In: Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society. Montreal, Canada: IEEE, 2012. 3874-3879
[34] Peng K X, Zhang K, You B, Dong J. Quality-relevant fault monitoring based on efficient projection to latent structures with application to hot strip mill process. IET Control Theory & Applications, 2015, 9(7): 1135-1145 https://www.researchgate.net/publication/276421361_Brief_paper_Quality-relevant_fault_monitoring_based_on_efficient_projection_to_latent_structures_with_application_to_hot_strip_mill_process
[35] Raich A, Çinar A. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes. AIChE Journal, 1996, 42(4): 995-1009 doi: 10.1002/(ISSN)1547-5905
[36] Yoon S, MacGregor J F. Fault diagnosis with multivariate statistical models——Part Ⅰ: using steady state fault signatures. Journal of Process Control, 2001, 11(4): 387-400 doi: 10.1016/S0959-1524(00)00008-1
[37] Kano M, Hasebe S, Hashimoto I, Ohno H. Statistical process monitoring based on dissimilarity of process data. AIChE Journal, 2002, 48(6): 1231-1240 doi: 10.1002/(ISSN)1547-5905
[38] Kano M, Nagao K, Hasebe S, Hashimoto I, Ohno H, Strauss R, Bakshi B R. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Computers & Chemical Engineering, 2002, 26(2): 161-174 http://www.academia.edu/794859/Comparison_of_multivariate_statistical_process_monitoring_methods_with_applications_to_the_Eastman_challenge_problem
[39] Qin S J, Li W H. Detection, identification, and reconstruction of faulty sensors with maximized sensitivity. AIChE Journal, 1999, 45(9): 1963-1976 doi: 10.1002/(ISSN)1547-5905
[40] Qin S J, Li W H. Detection and identification of faulty sensors in dynamic processes. AIChE Journal, 2001, 47(7): 1581-1593 doi: 10.1002/(ISSN)1547-5905
[41] Gertler J, Li W H, Huang Y B, McAvoy T. Isolation enhanced principal component analysis. AIChE Journal, 1999, 45(2): 323-334 doi: 10.1002/(ISSN)1547-5905
[42] Zhou Z, Wen C L, Yang C J. Fault isolation based on k-nearest neighbor rule for industrial processes. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2578-2586
[43] Li G, Qin S J, Yuan T. Data-driven root cause diagnosis of faults in process industries. Chemometrics and Intelligent Laboratory Systems, 2016, 159: 1-11 doi: 10.1016/j.chemolab.2016.09.006
[44] He B, Chen T, Yang X H. Root cause analysis in multivariate statistical process monitoring: integrating reconstruction-based multivariate contribution analysis with fuzzy-signed directed graphs. Computers & Chemical Engineering, 2014, 64: 167-177
[45] Liu Q, Chai T Y, Qin S J. Fault diagnosis of continuous annealing processes using a reconstruction-based method. Control Engineering Practice, 2012, 20(5): 511-518 doi: 10.1016/j.conengprac.2012.01.005
[46] Peng K X, Zhang K, Li G, Zhou D H. Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process. Control Engineering Practice, 2013, 21(4): 360-369 doi: 10.1016/j.conengprac.2012.11.013
[47] Peng K X, Zhang K, Li G. Online contribution rate based fault diagnosis for nonlinear industrial processes. Acta Automatica Sinica, 2014, 40(3): 423-430 doi: 10.1016/S1874-1029(14)60005-7
[48] MacGregor J F, Kourti T. Statistical process control of multivariate processes. Control Engineering Practice, 1995, 3(3): 403-414 doi: 10.1016/0967-0661(95)00014-L
[49] Miller P, Swanson R E, Heckler C E. Contribution plots: a missing link in multivariate quality control. Applied Mathematics and Computer Science, 1998, 8(4): 775-792 https://www.infona.pl/resource/bwmeta1.element.baztech-article-BPZ1-0021-0043
[50] Louwerse D J, Tates A A, Smilde A K, Koot G L M, Berndt H. PLS discriminant analysis with contribution plots to determine differences between parallel batch reactors in the process industry. Chemometrics and Intelligent Laboratory Systems, 1999, 46(2): 197-206 doi: 10.1016/S0169-7439(98)00185-3
[51] 李钢, 秦泗钊, 吉吟东, 周东华.基于T-PLS贡献图方法的故障诊断技术.自动化学报, 2009, 35(6): 759-765 http://www.aas.net.cn/CN/article/searchArticle.do#

Li Gang, Qin Si-Zhao, Ji Yin-Dong, Zhou Dong-Hua. Total PLS based contribution plots for fault diagnosis. Acta Automatica Sinica, 2009, 35(6): 759-765 http://www.aas.net.cn/CN/article/searchArticle.do#
[52] Westerhuis J A, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 95-114 doi: 10.1016/S0169-7439(00)00062-9
[53] Conlin A K, Martin E B, Morris A J. Confidence limits for contribution plots. Journal of Chemometrics, 2000, 14(5-6): 725-736 doi: 10.1002/(ISSN)1099-128X
[54] Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring. Automatica, 2009, 45(7): 1593-1600 doi: 10.1016/j.automatica.2009.02.027
[55] Alcala C F, Qin S J. Analysis and generalization of fault diagnosis methods for process monitoring. Journal of Process Control, 2011, 21(3): 322-330 doi: 10.1016/j.jprocont.2010.10.005
[56] Dunia R, Qin S J. Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal, 1998, 44(8): 1813-1831 doi: 10.1002/(ISSN)1547-5905
[57] Yue H H, Qin S J. Reconstruction-based fault identification using a combined index. Industrial & Engineering Chemistry Research, 2001, 40(20): 4403-4414 https://www.researchgate.net/publication/280656257_Reconstruction-based_fault_identification_using_a_combined_index
[58] Li G, Liu B S, Qin S J, Zhou D H. Quality relevant data-driven modeling and monitoring of multivariate dynamic processes: the dynamic T-PLS approach. IEEE Transactions on Neural Networks, 2011, 22(12): 2262-2271 doi: 10.1109/TNN.2011.2165853
[59] Li G, Qin S J, Chai T Y. Multi-directional reconstruction based contributions for root-cause diagnosis of dynamic processes. In: Proceedings of the 2014 American Control Conference. Portland, OR, USA: IEEE, 2014. 3500-3505
[60] Kaspar M H, Ray W H. Dynamic PLS modelling for process control. Chemical Engineering Science, 1993, 48(20): 3447-3461 doi: 10.1016/0009-2509(93)85001-6
[61] Kaspar M H, Ray W H. Chemometric methods for process monitoring and high-performance controller design. AIChE Journal, 1992, 38(10): 1593-1608 doi: 10.1002/(ISSN)1547-5905
[62] Lakshminarayanan S, Shah S L, Nandakumar K. Modeling and control of multivariable processes: dynamic PLS approach. AIChE Journal, 1997, 43(9): 2307-2322 doi: 10.1002/(ISSN)1547-5905
[63] Ricker N L. The use of biased least-squares estimators for parameters in discrete-time pulse-response models. Industrial & Engineering Chemistry Research, 1988, 27(2): 343-350 https://www.researchgate.net/publication/231368465_The_Use_of_Biased_Least-Sqares_Estimators_for_Parameters_in_Discrete-Time_Pulse_Response_Models
[64] Qin S J, McAvoy T J. A data-based process modeling approach and its applications. In: Proceedings of the 3rd IFAC Symposium on Dynamics and Control of Chemical Reactors, Distillation Columns and Batch Processes. Maryland, USA: IFAC, 1992. 93-98
[65] Chen J H, Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science, 2002, 57(1): 63-75 doi: 10.1016/S0009-2509(01)00366-9
[66] Lee G, Song S O, Yoon E S. Multiple-fault diagnosis based on system decomposition and dynamic PLS. Industrial & Engineering Chemistry Research, 2003, 42(24): 6145-6154 https://www.researchgate.net/publication/277433117_Multiple-Fault_Diagnosis_Based_on_System_Decomposition_and_Dynamic_PLS
[67] Fletcher N M, Morris A J, Montague G, Martin E B. Local dynamic partial least squares approaches for the modelling of batch processes. The Canadian Journal of Chemical Engineering, 2008, 86(5): 960-970 doi: 10.1002/cjce.v86:5
[68] Liu Q, Qin S J, Chai T Y. Quality-relevant monitoring and diagnosis with dynamic concurrent projection to latent structures. In: Proceedings of the 19th IFAC World Congress. Cape Town, South Africa: IFAC, 2014. 2740-2745
[69] Jiao J F, Yu H, Wang G. A quality-related fault detection approach based on dynamic least squares for process monitoring. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2625-2632 https://www.researchgate.net/publication/284113080_A_quality-related_fault_detection_approach_based_on_dynamic_least_squares_for_process_monitoring
[70] Helland K, Berntsen H E, Borgen O S, Martens H. Recursive algorithm for partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 1992, 14(1-3): 129-137 doi: 10.1016/0169-7439(92)80098-O
[71] Qin S J. Recursive PLS algorithms for adaptive data modeling. Computers & Chemical Engineering, 1998, 22(4-5): 503-514 https://www.researchgate.net/publication/222476094_Recursive_PLS_Algorithms_for_Adaptive_Data_Modeling
[72] Dong J, Zhang K, Huang Y, Li G, Peng K X. Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process. Neurocomputing, 2015, 154: 77-85 doi: 10.1016/j.neucom.2014.12.017
[73] Wang Y, Seborg D E, Larimore W E. Process monitoring based on canonical variate analysis. In: Proceedings of the 1997 European Control Conference. Brussels: IEEE, 1997. 3089-3094
[74] Jiang B B, Huang D X, Zhu X X, Yang F, Braatz R D. Canonical variate analysis-based contributions for fault identification. Journal of Process Control, 2015, 26: 17-25 doi: 10.1016/j.jprocont.2014.12.001
[75] 曹玉苹, 黄琳哲, 田学民.一种基于DIOCVA的过程监控方法.自动化学报, 2015, 41(12): 2072-2080 http://www.aas.net.cn/CN/abstract/abstract18780.shtml

Cao Yu-Ping, Huang Lin-Zhe, Tian Xue-Min. A process monitoring method using dynamic input-output canonical variate analysis. Acta Automatica Sinica, 2015, 41(12): 2072-2080 http://www.aas.net.cn/CN/abstract/abstract18780.shtml
[76] Wold S, Kettaneh-Wold N, Skagerberg B. Nonlinear PLS modeling. Chemometrics and Intelligent Laboratory Systems, 1989, 7(1-2): 53-65 doi: 10.1016/0169-7439(89)80111-X
[77] Qin S J, McAvoy T J. Nonlinear PLS modeling using neural networks. Computers & Chemical Engineering, 1992, 16(4): 379-391
[78] Malthouse E C, Tamhane A C, Mah R S H. Nonlinear partial least squares. Computers & Chemical Engineering, 1997, 21(8): 875-890
[79] Lindgren F, Geladi P, Wold S. The kernel algorithm for PLS. Journal of Chemometrics, 1993, 7(1): 45-59 doi: 10.1002/(ISSN)1099-128X
[80] Zhang Y W, Zhou H, Qin S J, Chai T Y. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares. IEEE Transactions on Industrial Informatics, 2010, 6(1): 3-10 doi: 10.1109/TII.2009.2033181
[81] Peng K X, Zhang K, Li G. Quality-related process monitoring based on total kernel PLS model and its industrial application. Mathematical Problems in Engineering, 2013, 2013: Article ID 707953
[82] Zhao X Q, Xue Y F. Output-relevant fault detection and identification of chemical process based on hybrid kernel T-PLS. The Canadian Journal of Chemical Engineering, 2014, 92(10): 1822-1828 doi: 10.1002/cjce.v92.10
[83] Mori J, Yu J. Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach. Journal of Process Control, 2014, 24(1): 57-71 doi: 10.1016/j.jprocont.2013.10.017
[84] Zhang Y W, Sun R R, Fan Y P. Fault diagnosis of nonlinear process based on KCPLS reconstruction. Chemometrics and Intelligent Laboratory Systems, 2015, 140: 49-60 doi: 10.1016/j.chemolab.2014.10.002
[85] Zhang Y W, Du W Y, Fan Y P, Zhang L J. Process Fault detection using directional kernel partial least squares. Industrial & Engineering Chemistry Research, 2015, 54(9): 2509-2518 https://www.researchgate.net/publication/273903960_Process_Fault_Detection_Using_Directional_Kernel_Partial_Least_Squares
[86] Luo L J, Bao S Y, Mao J F, Tang D. Quality prediction and quality-relevant monitoring with multilinear PLS for batch processes. Chemometrics and Intelligent Laboratory Systems, 2016, 150: 9-22 doi: 10.1016/j.chemolab.2015.11.004
[87] Liu Y, Chang Y Q, Wang F L. Nonlinear dynamic quality-related process monitoring based on dynamic total kernel PLS. In: Proceeding of the 11th World Congress on Intelligent Control and Automation. Shenyang, China: IEEE, 2014. 1360-1365
[88] Jia Q L, Zhang Y W. Quality-related fault detection approach based on dynamic kernel partial least squares. Chemical Engineering Research and Design, 2016, 106: 242-252 doi: 10.1016/j.cherd.2015.12.015
[89] 邓晓刚, 田学民.基于核规范变量分析的非线性故障诊断方法.控制与决策, 2006, 21(10): 1109-1113 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200610005.htm

Deng Xiao-Gang, Tian Xue-Min. Nonlinear process fault diagnosis based on kernel canonical variate analysis. Control and Decision, 2006, 21(10): 1109-1113 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200610005.htm
[90] Tan S, Wang F L, Chang Y Q, Chen W D, Xu J Z. Fault detection and diagnosis of nonlinear processes based on kernel ICA-KCCA. In: Proceeding of the 2010 Chinese Control and Decision Conference. Xuzhou, China: IEEE, 2010. 3869-3874
[91] Samuel R T, Cao Y. Kernel canonical variate analysis for nonlinear dynamic process monitoring. IFAC-PapersOnLine, 2015, 48(8): 605-610 doi: 10.1016/j.ifacol.2015.09.034
[92] Hwang D H, Han C H. Real-time monitoring for a process with multiple operating modes. Control Engineering Practice, 1999, 7(7): 891-902 doi: 10.1016/S0967-0661(99)00038-6
[93] Lane S, Martin E B, Kooijmans R, Morris A J. Performance monitoring of a multi-product semi-batch process. Journal of Process Control, 2001, 11(1): 1-11 doi: 10.1016/S0959-1524(99)00063-3
[94] Zhao S J, Zhang J, Xu Y M. Performance monitoring of processes with multiple operating modes through multiple PLS models. Journal of Process Control, 2006, 16(7): 763-772 doi: 10.1016/j.jprocont.2005.12.002
[95] Yue H H, Qin S J, Wiseman J, Toprac A. Plasma etching endpoint detection using multiple wavelengths for small open-area wafers. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2001, 19(1): 66-75 https://www.researchgate.net/publication/249508451_Plasma_etching_endpoint_detection_using_multiple_wavelengths_for_small_open-area_wafers
[96] Yu J, Qin S J. Multiway Gaussian mixture model based multiphase batch process monitoring. Industrial & Engineering Chemistry Research, 2009, 48(18): 8585-8594 https://www.researchgate.net/publication/231390559_Multiway_Gaussian_Mixture_Model_Based_Multiphase_Batch_Process_Monitoring
[97] Yoo C K, Villez K, Lee I B, Rosén C, Vanrolleghem P A. Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor. Biotechnology and Bioengineering, 2007, 96(4): 687-701 doi: 10.1002/(ISSN)1097-0290
[98] Peng K X, Zhang K, You B, Dong J. Quality-related prediction and monitoring of multi-mode processes using multiple PLS with application to an industrial hot strip mill. Neurocomputing, 2015, 168: 1094-1103 doi: 10.1016/j.neucom.2015.05.014
[99] Nomikos P, MacGregor J F. Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 97-108 doi: 10.1016/0169-7439(95)00043-7
[100] Kouti T, Nomikos P, MacGregor J F. Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS. Journal of Process Control, 1995, 5(4): 277-284 doi: 10.1016/0959-1524(95)00019-M
[101] Chen J H, Cheng Y C. Applying partial least squares based decomposition structure to multiloop adaptive proportional-integral-derivative controllers in nonlinear processes. Industrial & Engineering Chemistry Research, 2004, 43(18): 5888-5898
[102] Ündey C, Ertunç S, Çinar A. Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis. Industrial & Engineering Chemistry Research, 2003, 42(20): 4645-4658
[103] Facco P, Doplicher F, Bezzo F, Barolo M. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process. Journal of Process Control, 2009, 19(3): 520-529 doi: 10.1016/j.jprocont.2008.05.002
[104] Wang D. Robust data-driven modeling approach for real-time final product quality prediction in batch process operation. IEEE Transactions on Industrial Informatics, 2011, 7(2): 371-377 doi: 10.1109/TII.2010.2103401
[105] Stubbs S, Zhang J, Morris J. Multiway interval partial least squares for batch process performance monitoring. Industrial & Engineering Chemistry Research, 2013, 52(35): 12399-12407 doi: 10.1021/ie303562t
[106] Peng K X, Zhang K, You B, Dong J, Wang Z D. A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2615-2624 https://www.researchgate.net/publication/291556261_A_Quality-Based_Nonlinear_Fault_Diagnosis_Framework_Focusing_on_Industrial_Multimode_Batch_Processes
[107] Kesavan P, Lee J H, Saucedo V, Krishnagopalan G A. Partial least squares (PLS) based monitoring and control of batch digesters. Journal of Process Control, 2000, 10(2-3): 229-236 doi: 10.1016/S0959-1524(99)00028-1
[108] Ündey C, Çinar A. Statistical monitoring of multistage, multiphase batch processes. IEEE Control Systems Magazine, 2002, 22(5): 40-52 doi: 10.1109/MCS.2002.1035216
[109] Zhao C H. Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring. AIChE Journal, 2014, 60(2): 559-573 doi: 10.1002/aic.14282
[110] Zhao C H, Wang F L, Lu N Y, Jia M X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. Journal of Process Control, 2007, 17(9): 728-741 doi: 10.1016/j.jprocont.2007.02.005
[111] 赵春晖, 王福利, 姚远, 高福荣.基于时段的间歇过程统计建模、在线监测及质量预报.自动化学报, 2010, 36(3): 366-374 doi: 10.3724/SP.J.1004.2010.00366

Zhao Chun-Hui, Wang Fu-Li, Yao Yuan, Gao Fu-Rong. Phase-based statistical modeling, online monitoring and quality prediction for batch processes. Acta Automatica Sinica, 2010, 36(3): 366-374 doi: 10.3724/SP.J.1004.2010.00366
[112] Lu N Y, Gao F R. Stage-based online quality control for batch processes. Industrial & Engineering Chemistry Research, 2006, 45(7): 2272-2280 https://www.researchgate.net/publication/231373310_Stage-Based_Online_Quality_Control_for_Batch_Processes
[113] Russell S A, Kesavan P, Lee J H, Ogunnaike B A. Recursive data-based prediction and control of batch product quality. AIChE Journal, 1998, 44(11): 2442-2458 doi: 10.1002/(ISSN)1547-5905
[114] Pan Y D, Lee J H. Recursive data-based prediction and control of product quality for a PMMA batch process. Chemical Engineering Science, 2003, 58(14): 3215-3221 doi: 10.1016/S0009-2509(03)00190-8
[115] Kaistha N, Johnson M S, Moore C F, Leitnaker M G. Online batch recipe adjustments for product quality control using empirical models: application to a nylon-66 process. ISA Transactions, 2003, 42(2): 305-315 doi: 10.1016/S0019-0578(07)60135-9