[1] Harold W A. Aircraft warning system, U. S. Patent 3053932, September 1962
[2] Papageorgiou C P, Oren M, Poggio T. A general framework for object detection. In:Proceedings of the 6th IEEE International Conference on Computer Vision. Bombay, India:IEEE, 1998. 555-562
[3] Viola P, Jones M J. Robust real-time object detection. International Journal of Computer Vision, 2001, 4:51-52 http://www.academia.edu/9081672/Robust_Real-time_Object_Detection
[4] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2):91-110 doi: 10.1023/B:VISI.0000029664.99615.94
[5] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005. 886-893 http://www.oalib.com/references/16902331
[6] Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645 doi: 10.1109/TPAMI.2009.167
[7] Everingham M, Van Gool L, Williams C K I, Winn J, Zisserman A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2):303-338 doi: 10.1007/s11263-009-0275-4
[8] Rautaray S S, Agrawal A. Vision based hand gesture recognition for human computer interaction:a survey. Artificial Intelligence Review, 2015, 43(1):1-54 doi: 10.1007/s10462-012-9356-9
[9] Gao Y, Spiteri C, Pham M T, Al-Milli S. A survey on recent object detection techniques useful for monocular vision-based planetary terrain classification. Robotics and Autonomous Systems, 2014, 62(2):151-167 doi: 10.1016/j.robot.2013.11.003
[10] Zhang S P, Yao H X, Sun X, Lu X S. Sparse coding based visual tracking:review and experimental comparison. Pattern Recognition, 2013, 46(7):1772-1788 doi: 10.1016/j.patcog.2012.10.006
[11] Li X, Hu W M, Shen C H, Zhang Z F, Dick A, van den Hengel A. A survey of appearance models in visual object tracking. ACM transactions on Intelligent Systems and Technology (TIST), 2013, 4(4):Article No. 58 http://www.oalib.com/paper/4037071
[12] 高仕博, 程咏梅, 肖利平, 韦海萍.面向目标检测的稀疏表示方法研究进展.电子学报, 2015, 43(2):320-332 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201502018.htm

Gao Shi-Bo, Cheng Yong-Mei, Xiao Li-Ping, Wei Hai-Ping. Recent advances of sparse representation for object detection. Acta Electronica Sinica, 2015, 43(2):320-332 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201502018.htm
[13] Piccardi M. Background subtraction techniques:a review. In:Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics. The Hague, Holland:IEEE, 2004. 3099-3104 http://www.oalib.com/references/8616532
[14] Bouwmans T. Traditional and recent approaches in background modeling for foreground detection:an overview. Computer Science Review, 2014, 11-12:31-66 doi: 10.1016/j.cosrev.2014.04.001
[15] Smeulders A W M, Chu D M, Cucchiara R, Calderara S, Dehghan A, Shah M. Visual tracking:an experimental survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7):1442-1468 doi: 10.1109/TPAMI.2013.230
[16] Gowsikhaa D, Abirami S, Baskaran R. Automated human behavior analysis from surveillance videos:a survey. Artificial Intelligence Review, 2014, 42(4):747-765 doi: 10.1007/s10462-012-9341-3
[17] 黄凯奇, 陈晓棠, 康运锋, 谭铁牛.智能视频监控技术综述.计算机学报, 2015, 38(6):1093-1118 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201506001.htm

Huang Kai-Qi, Chen Xiao-Tang, Kang Yun-Feng, Tan Tie-Niu. Intelligent visual surveillance:a review. Chinese Journal of Computers, 2015, 38(6):1093-1118 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201506001.htm
[18] Yilmaz A, Javed O, Shah M. Object tracking:a survey. ACM Computing Surveys (CSUR), 2006, 38(4):Article No. 13 doi: 10.1145/1177352
[19] 侯志强, 韩崇昭.视觉跟踪技术综述.自动化学报, 2006, 32(4):603-617 http://www.aas.net.cn/CN/abstract/abstract14397.shtml

Hou Zhi-Qiang, Han Chong-Zhao. A survey of visual tracking. Acta Automatica Sinica, 2006, 32(4):603-617 http://www.aas.net.cn/CN/abstract/abstract14397.shtml
[20] 万缨, 韩毅, 卢汉清.运动目标检测算法的探讨.计算机仿真, 2006, 23(10):221-226 http://www.cqvip.com/qk/92897x/200610/23059904.html

Wan Ying, Han Yi, Lu Han-Qing. The methods for moving object detection. Computer Simulation, 2006, 23(10):221-226 http://www.cqvip.com/qk/92897x/200610/23059904.html
[21] 张娟, 毛晓波, 陈铁军.运动目标跟踪算法研究综述.计算机应用研究, 2009, 26(12):4407-4410 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ200912001.htm

Zhang Juan, Mao Xiao-Bo, Chen Tie-Jun. Survey of moving object tracking algorithm. Application Research of Computers, 2009, 26(12):4407-4410 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ200912001.htm
[22] 牛芗洁, 黄永春.微弱运动目标的检测与跟踪识别算法研究.计算机仿真, 2010, 27(4):245-247 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201004061.htm

Niu Xiang-Jie, Huang Yong-Chun. Research on detection and tracking identification algorithm of weak moving target. Computer Simulation, 2010, 27(4):245-247 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201004061.htm
[23] Gutchess D, Trajkovics M, Cohen-Solal E, Lyons D, Jain A K. A background model initialization algorithm for video surveillance. In:Proceedings of the 8th IEEE International Conference on Computer Vision. Vancouver, BC, Canada:IEEE, 2001. 733-740
[24] Wang H Z, Suter D. A novel robust statistical method for background initialization and visual surveillance. In:Proceedings of the 7th Asian Conference on Computer Vision (ACCV 2006). Hyderabad, India:Springer, 2006. 328-337 http://dblp.uni-trier.de/db/conf/accv/accv2006-1
[25] Colombari A, Fusiello A. Patch-based background initialization in heavily cluttered video. IEEE Transactions on Image Processing, 2010, 19(4):926-933 doi: 10.1109/TIP.2009.2038652
[26] Lee B, Hedley M. Background estimation for video surveillance. In:Proceedings of the Image and Vision Computing New Zealand. Auckland, New Zealand, 2002. 315-320
[27] McFarlane N J B, Schofield C P. Segmentation and tracking of piglets in images. Machine Vision and Applications, 1995, 8(3):187-193 doi: 10.1007/BF01215814
[28] Bouwmans T, El Baf F, Vachon B. Statistical background modeling for foreground detection:a survey. Handbook of Pattern Recognition and Computer Vision. Singapore:World Scientific Publishing, 2010. 181-189
[29] Bouwmans T. Recent advanced statistical background modeling for foreground detection:a systematic survey. Recent Patents on Computer Science, 2011, 4(3):147-176 http://benthamscience.com/journal/abstracts.php?journalID=rpcseng&articleID=94725
[30] Butler D E, Bove V M Jr, Sridharan S. Real-time adaptive foreground/background segmentation. EURASIP Journal on Advances in Signal Processing, 2005, 2005:2292-2304 doi: 10.1155/ASP.2005.2292
[31] Kim K, Chalidabhongse T H, Harwood D, Davis L. Background modeling and subtraction by codebook construction. In:Proceedings of the 2004 IEEE International Conference on Image Processing. Singapore:IEEE, 2004. 3061-3064 https://www.researchgate.net/publication/4138335_Background_modeling_and_subtraction_by_codebook_construction
[32] Palomo E J, Domínguez E, Luque R M, Muńoz J. Image hierarchical segmentation based on a GHSOM. In:Proceedings of the 16th International Conference on Neural Information Processing. Bangkok, Thailand:Springer, 2009. 743-750
[33] De Gregorio M, Giordano M. Background modeling by weightless neural networks. In:Proceedings of the 2015 Workshops on New Trends in Image Analysis and Processing (ICIAP 2015). Genoa, Italy:Springer, 2015. 493-501 http://www.springer.com/us/book/9783319232218
[34] Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower:principles and practice of background maintenance. In:Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999. 255-261
[35] Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filtering. In:Proceedings of the 1995 International Conference on Recent Advances in Mechatronics. Istanbul, Turkey:Boğaziči University, 1995. 193-199
[36] Kim W, Kim C. Background subtraction for dynamic texture scenes using fuzzy color histograms. IEEE Signal Processing Letters, 2012, 19(3):127-130 doi: 10.1109/LSP.2011.2182648
[37] Bouwmans T, Zahzah E H. Robust PCA via principal component pursuit:a review for a comparative evaluation in video surveillance. Computer Vision and Image Understanding, 2014, 122:22-34 doi: 10.1016/j.cviu.2013.11.009
[38] Cevher V, Sankaranarayanan A, Duarte M F, Reddy D, Baraniuk R G, Chellappa R. Compressive sensing for background subtraction. In:Proceedings of the 10th European Conference on Computer Vision (ECCV 2008). Marseille, France:Springer, 2008. 155-168
[39] Wren C R, Porikli F. Waviz:spectral similarity for object detection. In:Proceedings of the 2005 IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Breckenridge, Colorado, USA:IEEE, 2005. 55-61
[40] Baltieri D, Vezzani R, Cucchiara R. Fast background initialization with recursive Hadamard transform. In:Proceedings of the 7th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Boston, USA:IEEE, 2010. 165-171
[41] Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of gaussians for foreground detection——a survey. Recent Patents on Computer Science, 2008, 1(3):219-237 doi: 10.2174/2213275910801030219
[42] Lin H H, Liu T L, Chuang J H. A probabilistic SVM approach for background scene initialization. In:Proceedings of the 2002 International Conference on Image Processing. Rochester, New York, USA:IEEE, 2002. 893-896
[43] Maddalena L, Petrosino A. The SOBS algorithm:what are the limits? In:Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Providence, RI, USA:IEEE, 2012. 21-26
[44] Maddalena L, Petrosino A. The 3dSOBS+ algorithm for moving object detection. Computer Vision and Image Understanding, 2014, 122:65-73 doi: 10.1016/j.cviu.2013.11.006
[45] Goyette N, Jodoin P M, Porikli F, Konrad J, Ishwar P. Changedetection.net:a new change detection benchmark dataset. In:Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Providence, RI, USA:IEEE, 2012. 1-8
[46] Barnich O, Van Droogenbroeck M. ViBe:a powerful random technique to estimate the background in video sequences. In:Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Taipei, China:IEEE, 2009. 945-948 http://cn.bing.com/academic/profile?id=2115352131&encoded=0&v=paper_preview&mkt=zh-cn
[47] Hofmann M, Tiefenbacher P, Rigoll G. Background segmentation with feedback:the pixel-based adaptive segmenter. In:Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Providence, RI, USA:IEEE, 2012. 38-43
[48] Sobral A, Bouwmans T. BGS Library:A Library Framework for Algorithm's Evaluation in Foreground/Background Segmentation. London:CRC Press, 2014. https://www.researchgate.net/publication/259574448_BGS_Library_A_Library_Framework_for_Algorithm%27s_Evaluation_in_ForegroundBackground_Segmentation
[49] Ke Y, Sukthankar R. PCA-SIFT:a more distinctive representation for local image descriptors. In:Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, D.C., USA:IEEE, 2004. Ⅱ-506-Ⅱ-513
[50] Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10):1615-1630 doi: 10.1109/TPAMI.2005.188
[51] Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-up robust features (SURF). Computer Vision and Image Understanding, 2008, 110(3):346-359 doi: 10.1016/j.cviu.2007.09.014
[52] Tola E, Lepetit V, Fua P. Daisy:an efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5):815-830 doi: 10.1109/TPAMI.2009.77
[53] Zhu Q, Yeh M C, Cheng K T, Avidan S. Fast human detection using a cascade of histograms of oriented gradients. In:Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA:IEEE, 2006. 1491-1498
[54] Watanabe T, Ito S, Yokoi K. Co-occurrence histograms of oriented gradients for human detection. Information and Media Technologies, 2010, 5(2):659-667 https://www.researchgate.net/publication/240976706_Co-occurrence_Histograms_of_Oriented_Gradients_for_Human_Detection
[55] Torralba A, Oliva A, Castelhano M S, Henderson J M. Contextual guidance of eye movements and attention in real-world scenes:the role of global features in object search. Psychological Review, 2006, 113(4):766-786 doi: 10.1037/0033-295X.113.4.766
[56] Jain A K, Ratha N K, Lakshmanan S. Object detection using Gabor filters. Pattern Recognition, 1997, 30(2):295-309 doi: 10.1016/S0031-3203(96)00068-4
[57] Ahonen T, Hadid A, Pietikäinen M. Face recognition with local binary patterns. In:Proceedings of the 8th European Conference on Computer Vision (ECCV 2004). Prague, Czech Republic:Springer, 2004. 469-481
[58] Heikkilä M, Pietikäinen M, Schmid C. Description of interest regions with local binary patterns. Pattern Recognition, 2009, 42(3):425-436 doi: 10.1016/j.patcog.2008.08.014
[59] Nguyen D T, Ogunbona P O, Li W Q. A novel shape-based non-redundant local binary pattern descriptor for object detection. Pattern Recognition, 2013, 46(5):1485-1500 doi: 10.1016/j.patcog.2012.10.024
[60] Viola P, Jones M. Robust Real-time Object Detection, Technical Report CRL-2001-1, Cambridge Research Laboratory, University of Cambridge, United Kingdom, 2001 http://www.nexoncn.com/read/a611db6e123132763aa5bf23.html
[61] Wu J X, Rehg J M. CENTRIST:a visual descriptor for scene categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1489-1501 doi: 10.1109/TPAMI.2010.224
[62] Bourdev L, Malik J. Poselets:body part detectors trained using 3D human pose annotations. In:Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009. 1365-1372 https://www.researchgate.net/publication/221110114_Poselets_Body_Part_Detectors_Trained_Using_3D_Human_Pose_Annotations
[63] Girshick R, Song H O, Darrell T. Discriminatively activated sparselets. In:Proceedings of the 30th International Conference on Machine Learning (ICML-13). Atlanta, GA, USA:ACM, 2013. 196-204
[64] Kokkinos I. Shufflets:shared mid-level parts for fast object detection. In:Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, Australia:IEEE, 2013. 1393-1400 https://www.computer.org/csdl/proceedings/iccv/2013/2840/00/index.html
[65] Wang X Y, Yang M, Zhu S H, Lin Y Q. Regionlets for generic object detection. In:Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, Australia:IEEE, 2013. 17-24
[66] Yan S Y, Shan S G, Chen X L, Gao W. Locally assembled binary (LAB) feature with feature-centric cascade for fast and accurate face detection. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, Alaska, USA:IEEE, 2008. 1-7
[67] Arman F, Aggarwal J K. Model-based object recognition in dense-range images——a review. ACM Computing Surveys (CSUR), 1993, 25(1):5-43 doi: 10.1145/151254.151255
[68] Yang M Q, Kpalma K, Ronsin J. A survey of shape feature extraction techniques. Pattern Recognition. IN-TECH, 2008. 43-90
[69] Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4):509-522 doi: 10.1109/34.993558
[70] Kontschieder P, Riemenschneider H, Donoser M, Bischof H. Discriminative learning of contour fragments for object detection. In:Proceedings of the 2011 British Machine Vision Conference. Dundee, Scotland:British Machine Vision Association, 2011. 4.1-4.12
[71] Ferrari V, Fevrier L, Jurie F, Schmid C. Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(1):36-51 doi: 10.1109/TPAMI.2007.1144
[72] Chia A Y S, Rahardja S, Rajan D, Leung M K. Object recognition by discriminative combinations of line segments and ellipses. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA:IEEE, 2010. 2225-2232 https://www.computer.org/csdl/proceedings/cvpr/2010/6984/00/index.html
[73] Tombari F, Franchi A, Di L. BOLD features to detect texture-less objects. In:Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, Australia:IEEE, 2013. 1265-1272 https://www.computer.org/csdl/proceedings/iccv/2013/2840/00/index.html
[74] Jurie F, Schmid C. Scale-invariant shape features for recognition of object categories. In:Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, D. C., USA:IEEE, 2004. Ⅱ-90-Ⅱ-96
[75] Dhankhar P, Sahu N. A review and research of edge detection techniques for image segmentation. International Journal of Computer Science and Mobile Computing (IJCSMC), 2013, 2(7):86-92 http://www.academia.edu/4018689/A_Review_and_Research_of_Edge_Detection_Techniques_for_Image_Segmentation_
[76] Rassem T H, Khoo B E. Object class recognition using combination of color SIFT descriptors. In:Proceedings of the 2011 IEEE International Conference on Imaging Systems and Techniques (IST). Penang, Malaysia:IEEE, 2011. 290-295
[77] Van De Weijer J, Schmid C, Verbeek J, Larlus D. Learning color names for real-world applications. IEEE Transactions on Image Processing, 2009, 18(7):1512-1523 doi: 10.1109/TIP.2009.2019809
[78] Vadivel A, Sural S, Majumdar A K. An integrated color and intensity co-occurrence matrix. Pattern Recognition Letters, 2007, 28(8):974-983 doi: 10.1016/j.patrec.2007.01.004
[79] Walk S, Majer N, Schindler K, Schiele B. New features and insights for pedestrian detection. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA:IEEE, 2010. 1030-1037
[80] Shechtman E, Irani M. Matching local self-similarities across images and videos. In:Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, Minnesota, USA:IEEE, 2007. 1-8
[81] Deselaers T, Ferrari V. Global and efficient self-similarity for object classification and detection. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA:IEEE, 2010. 1633-1640
[82] Tuzel O, Porikli F, Meer P. Human detection via classification on Riemannian manifolds. In:Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, Minnesota, USA:IEEE, 2007. 1-8 https://www.researchgate.net/publication/221361317_Human_Detection_via_Classification_on_Riemannian_Manifolds
[83] Burghouts G J, Geusebroek J M. Performance evaluation of local colour invariants. Computer Vision and Image Understanding, 2009, 113(1):48-62 doi: 10.1016/j.cviu.2008.07.003
[84] Bosch A, Zisserman A, Muńoz X. Scene classification using a hybrid generative/discriminative approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4):712-727 doi: 10.1109/TPAMI.2007.70716
[85] Van De Weijer J, Schmid C. Coloring local feature extraction. In:Proceedings of the 9th European Conference on Computer Vision (ECCV 2006). Graz, Austria:Springer, 2006. 334-348
[86] Khan F S, Anwer R M, van de Weijer J, Bagdanov A D, Vanrell M, Lopez A M. Color attributes for object detection. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2012. 3306-3313
[87] Danelljan M, Khan F S, Felsberg M, van de Weijer J. Adaptive color attributes for real-time visual tracking. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA:IEEE, 2014. 1090-1097 https://www.computer.org/csdl/proceedings/cvpr/2014/5118/00/index.html
[88] Kadir T, Zisserman A, Brady M. An affine invariant salient region detector. In:Proceedings of the 8th European Conference on Computer Vision (ECCV 2004). Prague, Czech Republic:Springer, 2004. 228-241
[89] Lee T S, Mumford D, Romero R, Lamme V A F. The role of the primary visual cortex in higher level vision. Vision Research, 1998, 38(15-16):2429-2454 doi: 10.1016/S0042-6989(97)00464-1
[90] Lee T S, Mumford D. Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A, 2003, 20(7):1434-1448 doi: 10.1364/JOSAA.20.001434
[91] Jia Y Q, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe:convolutional architecture for fast feature embedding. In:Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, Florida, USA:ACM, 2014. 675-678
[92] Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, Ranzato M, Senior A, Tucker P, Yang K, Le Q V, Ng A Y. Large scale distributed deep networks. In:Proceedings of the 2012 Advances in Neural Information Processing Systems 25. Lake Tahoe, Nevada, USA:MIT Press, 2012. 1223-1231
[93] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z F, Citro C, Corrado G S, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y Q, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X Q. TensorFlow:large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467, 2016.
[94] Collobert R, Kavukcuoglu K, Farabet C. Torch7:a Matlab-like environment for machine learning. In:Proceedings of Annual Conference on Neural Information Processing Systems. Granada, Spain:MIT Press, 2011.
[95] Krizhevsky A. CUDA-convnet:high-performance C++/CUDA implementation of convolutional neural networks[Online], available:http://code.google.com/p/cuda-convnet/, August6, 2016
[96] Vedaldi A, Lenc K. MatConvNet-convolutional neural networks for MATLAB. arXiv:1412.4564, 2014.
[97] Goodfellow I J, Warde-Farley D, Lamblin P, Dumoulin V, Mirza M, Pascanu R, Bergstra J, Bastien F, Bengio Y. Pylearn2:a machine learning research library. arXiv:1308.4214, 2013.
[98] The Theano Development Team. Theano:a Python framework for fast computation of mathematical expressions. arXiv:1605.02688, 2016.
[99] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7):1527-1554 doi: 10.1162/neco.2006.18.7.1527
[100] Hinton G E, Zemel R S. Autoencoders, minimum description length and Helmholtz free energy. In:Proceedings of the 1993 Advances in Neural Information Processing Systems 6. Cambridge, MA:MIT Press, 1993. 3-10
[101] Lécun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324 doi: 10.1109/5.726791
[102] Lee H, Grosse R, Ranganath R, Ng A Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In:Proceedings of the 26th Annual International Conference on Machine Learning. Montréal, Canada:ACM, 2009. 609-616
[103] Nair V, Hinton G E. 3D object recognition with deep belief nets. In:Proceedings of the 2009 Advances in Neural Information Processing Systems 22. Vancouver, B.C., Canada:MIT Press, 2009. 1339-1347
[104] Eslami S M A, Heess N, Williams C K I, Winn J. The shape Boltzmann machine:a strong model of object shape. International Journal of Computer Vision, 2014, 107(2):155-176 doi: 10.1007/s11263-013-0669-1
[105] Salakhutdinov R, Hinton G. Deep Boltzmann machines. In:Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Clearwater Beach, Florida, USA:ACM, 2009. 448-455
[106] 郑胤, 陈权崎, 章毓晋.深度学习及其在目标和行为识别中的新进展.中国图象图形学报, 2014, 19(2):175-184 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201402002.htm

Zheng Yin, Chen Quan-Qi, Zhang Yu-Jin. Deep learning and its new progress in object and behavior recognition. Journal of Image and Graphics, 2014, 19(2):175-184 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201402002.htm
[107] Xiong M F, Chen J, Wang Z, Liang C, Zheng Q, Han Z, Sun K M. Deep feature representation via multiple stack auto-encoders. In:Proceedings of the 16th Pacific-Rim Conference on Advances in Multimedia Information Processing (PCM 2015). Gwangju, South Korea:Springer, 2015. 275-284
[108] Yin H P, Jiao X G, Chai Y, Fang B. Scene classification based on single-layer SAE and SVM. Expert Systems with Applications, 2015, 42(7):3368-3380 doi: 10.1016/j.eswa.2014.11.069
[109] Bai J, Wu Y, Zhang J M, Chen F Q. Subset based deep learning for RGB-D object recognition. Neurocomputing, 2015, 165:280-292 doi: 10.1016/j.neucom.2015.03.017
[110] Su S Z, Liu Z H, Xu S P, Li S Z, Ji R R. Sparse auto-encoder based feature learning for human body detection in depth image. Signal Processing, 2015, 112:43-52 doi: 10.1016/j.sigpro.2014.11.003
[111] Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 1962, 160(1):106-154 doi: 10.1113/jphysiol.1962.sp006837
[112] Donahue J, Jia Y Q, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T. DeCAF:a deep convolutional activation feature for generic visual recognition. arXiv:1310.1531, 2013.
[113] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA:IEEE, 2014. 580-587
[114] He K M, Zhang X Y, Ren S Q, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916 doi: 10.1109/TPAMI.2015.2389824
[115] Girshick R. Fast R-CNN. arXiv:1504.08083, 2015.
[116] Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN:towards real-time object detection with region proposal networks. arXiv:1506.01497, 2015.
[117] Zhu Y K, Urtasun R, Salakhutdinov R, Fidler S. SegDeepM:exploiting segmentation and context in deep neural networks for object detection. arXiv:1502.04275, 2015. http://www.academia.edu/14266389/segDeepM_Exploiting_Segmentation_and_Context_in_Deep_Neural_Networks_for_Object_Detection
[118] Han X F, Leung T, Jia Y Q, Sukthankar R, Berg A C. MatchNet:unifying feature and metric learning for patch-based matching. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015. 3279-3286
[119] Everingham M, Eslami S M A, Van Gool L, Williams C K I, Winn J, Zisserman A. The pascal visual object classes challenge:a retrospective. International Journal of Computer Vision, 2015, 111(1):98-136 doi: 10.1007/s11263-014-0733-5
[120] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z H, Karpathy A, Khosla A, Bernstein M, Berg A C, Li F F. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3):211-252 doi: 10.1007/s11263-015-0816-y
[121] Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. OverFeat:integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229, 2013. http://www.bibsonomy.org/bibtex/245b5a51026b1aa160b129a2e05c1a1f2/dblp
[122] Lin M, Chen Q, Yan S C. Network in network. arXiv:1312.4400, 2013.
[123] Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015. 1-9
[124] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/
[125] Ouyang W L, Luo P, Zeng X Y, Qiu S, Tian Y L, Li H S, Yang S, Wang Z, Xiong Y J, Qian C, Zhu Z Y, Wang R H, Loy C C, Wang X G, Tang X O. DeepID-Net:multi-stage and deformable deep convolutional neural networks for object detection. arXiv:1409.3505, 2014.
[126] Maturana D, Scherer S. VoxNet:a 3D convolutional neural network for real-time object recognition. In:Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany:IEEE, 2015. 922-928
[127] He S F, Lau R W H, Liu W X, Huang Z, Yang Q X. SuperCNN:a superpixelwise convolutional neural network for salient object detection. International Journal of Computer Vision, 2015, 15(3):330-344 https://www.researchgate.net/publication/275246763_SuperCNN_A_Superpixelwise_Convolutional_Neural_Network_for_Salient_Object_Detection
[128] Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking. arXiv:1510.07945, 2015.
[129] Danelljan M, Häger G, Shahbaz Khan F, Felsberg M. Learning spatially regularized correlation filters for visual tracking. In:Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015. 4310-4318
[130] Wang N Y, Li S Y, Gupta A, Yeung D Y. Transferring rich feature hierarchies for robust visual tracking. arXiv:1501.04587, 2015.
[131] Kotsiantis S B, Zaharakis I D, Pintelas P E. Machine learning:a review of classification and combining techniques. Artificial Intelligence Review, 2006, 26(3):159-190 doi: 10.1007/s10462-007-9052-3
[132] Schölkopf B, Smola A J. Learning with Kernels:Support Vector Machines, Regularization, Optimization, and Beyond. London, England:MIT Press, 2002. http://www.researchgate.net/publication/240074728_Kernels_Regularization_and_Optimization
[133] Lu Z W, Ip H H S. Image categorization with spatial mismatch kernels. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA:IEEE, 2009. 3974-404 https://www.computer.org/web/csdl/index/-/csdl/proceedings/cvpr/2009/3992/00/index.html
[134] Lazebnik S, Schmid C, Ponce J. Beyond bags of features:spatial pyramid matching for recognizing natural scene categories. In:Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA:IEEE, 2006. 2169-2178 http://www.oalib.com/references/16875919
[135] Yang J C, Yu K, Gong Y H, Huang T. Linear spatial pyramid matching using sparse coding for image classification. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA:IEEE, 2009. 1794-1801
[136] Kavukcuoglu K, Ranzato M A, Fergus R, LeCun Y. Learning invariant features through topographic filter maps. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA:IEEE, 2009. 1605-1612 https://www.computer.org/web/csdl/index/-/csdl/proceedings/cvpr/2009/3992/00/index.html
[137] Gao S H, Tsang I W H, Chia L T, Zhao P L. Local features are not lonely-Laplacian sparse coding for image classification. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE, 2010. 3555-3561 https://www.researchgate.net/publication/221364283_Local_features_are_not_lonely_-_Laplacian_sparse_coding_for_image_classification
[138] Meshram S B, Shinde S M. A survey on ensemble methods for high dimensional data classification in biomedicine field. International Journal of Computer Applications, 2015, 111(11):5-7 doi: 10.5120/19580-1162
[139] Papageorgiou C, Poggio T. A trainable system for object detection. International Journal of Computer Vision, 2000, 38(1):15-33 doi: 10.1023/A:1008162616689
[140] Wu B, Nevatia R. Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors. In:Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China:IEEE, 2005. 90-97
[141] Wu B, Nevatia R. Cluster boosted tree classifier for multi-view, multi-pose object detection. In:Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil:IEEE, 2007. 1-8
[142] Wang Y, Jodoin P M, Porikli F, Konrad J, Benezeth Y, Ishwar P. CDnet 2014:an expanded change detection benchmark dataset. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, OH, USA:IEEE, 2014. 393-400
[143] Dollár P, Wojek C, Schiele B, Perona P. Pedestrian detection:a benchmark. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA:IEEE, 2009. 304-311
[144] González A, Vázquez D, Ramos S, López A M, Amores J. Spatiotemporal stacked sequential learning for pedestrian detection. In:Proceedings of the 7th Iberian Conference on Pattern Recognition and Image Analysis. Santiago de Compostela, Spain:Springer, 2015. 3-12 doi: 10.1007/978-3-319-19390-8
[145] Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick C L. Microsoft COCO:common objects in context. In:Proceedings of the 13th European Conference on Computer Vision (ECCV 2014). Zurich, Switzerland:Springer, 2014. 740-755
[146] Seber G A F, Lee A J. Linear Regression Analysis (Second Edition). New York:John Wiley & Sons, 2003.
[147] Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In:Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head, SC, USA:IEEE, 2000. 142-149 http://www.oalib.com/references/16342699
[148] Chen F S, Fu C M, Huang C L. Hand gesture recognition using a real-time tracking method and hidden Markov models. Image and Vision Computing, 2003, 21(8):745-758 doi: 10.1016/S0262-8856(03)00070-2
[149] Ali N H, Hassan G M. Kalman filter tracking. International Journal of Computer Applications, 2014, 89(9):15-18 doi: 10.5120/15530-4315
[150] Chang C, Ansari R. Kernel particle filter for visual tracking. IEEE Signal Processing Letters, 2005, 12(3):242-245 doi: 10.1109/LSP.2004.842254
[151] Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5):564-577 doi: 10.1109/TPAMI.2003.1195991
[152] Rahmati H, Aamo O M, StavdahlØ, Adde L. Kernel-based object tracking for cerebral palsy detection. In:Proceedings of the 2012 International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV). United States:CSREA Press, 2012. 17-23
[153] Melzer T, Reiter M, Bischof H. Appearance models based on kernel canonical correlation analysis. Pattern Recognition, 2003, 36(9):1961-1971 doi: 10.1016/S0031-3203(03)00058-X
[154] Yilmaz A. Object tracking by asymmetric kernel mean shift with automatic scale and orientation selection. In:Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA:IEEE, 2007. 1-6
[155] Hu J S, Juan C W, Wang J J. A spatial-color mean-shift object tracking algorithm with scale and orientation estimation. Pattern Recognition Letters, 2008, 29(16):2165-2173 doi: 10.1016/j.patrec.2008.08.007
[156] Levey A, Lindenbaum M. Sequential Karhunen-Loeve basis extraction and its application to images. IEEE Transactions on Image Processing, 2000, 9(8):1371-1374 doi: 10.1109/83.855432
[157] Brand M. Incremental singular value decomposition of uncertain data with missing values. In:Proceedings of the 7th European Conference on Computer Vision (ECCV 2002). Copenhagen, Denmark:Springer, 2002. 707-720 http://dl.acm.org/citation.cfm?id=645315&picked=prox
[158] De La Torre F, Black M J. A framework for robust subspace learning. International Journal of Computer Vision, 2003, 54(1-3):117-142 doi: 10.1023%2FA%3A1023709501986
[159] Li Y M. On incremental and robust subspace learning. Pattern Recognition, 2004, 37(7):1509-1518 doi: 10.1016/j.patcog.2003.11.010
[160] Skocaj D, Leonardis A. Weighted and robust incremental method for subspace learning. In:Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France:IEEE, 2003. 1494-1501 https://www.computer.org/csdl/proceedings/iccv/2003/1950/02/index.html
[161] Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1-3):125-141 doi: 10.1007/s11263-007-0075-7
[162] Wang Q, Chen F, Xu W L, Yang M H. Object tracking via partial least squares analysis. IEEE Transactions on Image Processing, 2012, 21(10):4454-4465 doi: 10.1109/TIP.2012.2205700
[163] Li X, Hu W M, Zhang Z F, Zhang X Q, Luo G. Robust visual tracking based on incremental tensor subspace learning. In:Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil:IEEE, 2007. 1-8
[164] Wen J, Li X L, Gao X B, Tao D C. Incremental learning of weighted tensor subspace for visual tracking. In:Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics. San Antonio, Texas, USA:IEEE, 2009. 3688-3693
[165] Khan Z H, Gu I Y H. Nonlinear dynamic model for visual object tracking on grassmann manifolds with partial occlusion handling. IEEE Transactions on Cybernetics, 2013, 43(6):2005-2019 doi: 10.1109/TSMCB.2013.2237900
[166] Chin T J, Suter D. Incremental kernel principal component analysis. IEEE Transactions on Image Processing, 2007, 16(6):1662-1674 doi: 10.1109/TIP.2007.896668
[167] Mei X, Ling H B. Robust visual tracking using l1 minimization. In:Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009. 1436-1443
[168] Li H X, Shen C H, Shi Q F. Real-time visual tracking using compressive sensing. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2011. 1305-1312
[169] Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2012. 1822-1829
[170] Dong W H, Chang F L, Zhao Z J. Visual tracking with multifeature joint sparse representation. Journal of Electronic Imaging, 2015, 24(1):013006 doi: 10.1117/1.JEI.24.1.013006
[171] Hu W M, Li W, Zhang X Q, Maybank S. Single and multiple object tracking using a multi-feature joint sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(4):816-833 doi: 10.1109/TPAMI.2014.2353628
[172] Zhang T Z, Liu S, Xu C S, Yan S C, Ghanem B, Ahuja N, Yang M H. Structural sparse tracking. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015. 150-158 https://www.computer.org/csdl/proceedings/cvpr/2015/6964/00/index.html
[173] Zhong W, Lu H C, Yang M H. Robust object tracking via sparse collaborative appearance model. IEEE Transactions on Image Processing, 2014, 23(5):2356-2368 doi: 10.1109/TIP.2014.2313227
[174] Bai T X, Li Y F. Robust visual tracking with structured sparse representation appearance model. Pattern Recognition, 2012, 45(6):2390-2404 doi: 10.1016/j.patcog.2011.12.004
[175] Zhang S P, Yao H X, Zhou H Y, Sun X, Liu S H. Robust visual tracking based on online learning sparse representation. Neurocomputing, 2013, 100:31-40 doi: 10.1016/j.neucom.2011.11.031
[176] Wang N Y, Wang J D, Yeung D Y. Online robust nonnegative dictionary learning for visual tracking. In:Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, Australia:IEEE, 2013. 657-664 http://www.oalib.com/references/17185722
[177] Zhang X, Guan N Y, Tao D C, Qiu X G, Luo Z G. Online multi-modal robust non-negative dictionary learning for visual tracking. PLoS One, 2015, 10(5):657-664
[178] Oza N C. Online bagging and boosting. In:Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics. Waikoloa, Hawaii, USA:IEEE, 2005. 2340-2345
[179] Valiant L. Probably Approximately Correct:Nature0s Algorithms for Learning and Prospering in a Complex World. New York, USA:Basic Books, 2013. http://www.amazon.de/Probably-Approximately-Correct-Algorithms-Prospering-ebook/dp/B00BE650IQ
[180] Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In:Proceedings of the 2006 British Machine Conference. Edinburgh, UK:British Machine Vision Association, 2006. 6.1-6.10
[181] Liu X M, Yu T. Gradient feature selection for online boosting. In:Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil:IEEE, 2007. 1-8 http://www.oalib.com/references/16891977
[182] Avidan S. Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2):261-271 doi: 10.1109/TPAMI.2007.35
[183] Parag T, Porikli F, Elgammal A. Boosting adaptive linear weak classifiers for online learning and tracking. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA:IEEE, 2008. 1-8 https://www.computer.org/csdl/proceedings/cvpr/2008/2242/00/index.html
[184] Visentini I, Snidaro L, Foresti G L. Dynamic ensemble for target tracking. In:Proceedings of the 8th IEEE International Workshop on Visual Surveillance (VS2008). Marseille, France:IEEE, 2008. 1-8
[185] Okuma K, Taleghani A, De Freitas N, Little J J, Lowe D G. A boosted particle filter:multitarget detection and tracking. In:Proceedings of the 8th European Conference on Computer Vision (ECCV 2004). Prague, Czech Republic:Springer, 2004. 28-39
[186] Wang J Y, Chen X L, Gao W. Online selecting discriminative tracking features using particle filter. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005. 1037-1042 https://www.computer.org/web/csdl/index/-/csdl/proceedings/cvpr/2005/2372/02/index.html
[187] Avidan S. Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8):1064-1072 doi: 10.1109/TPAMI.2004.53
[188] Williams O, Blake A, Cipolla R. Sparse Bayesian learning for efficient visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8):1292-1304 doi: 10.1109/TPAMI.2005.167
[189] Tian M, Zhang W W, Liu F Q. On-line ensemble SVM for robust object tracking. In:Proceedings of the 8th Asian Conference on Computer Vision (ACCV 2007). Tokyo, Japan:Springer, 2007. 355-364
[190] Yao R, Shi Q F, Shen C H, Zhang Y N, van den Hengel A. Part-based visual tracking with online latent structural learning. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, OR, USA:IEEE, 2013. 2363-2370
[191] Bai Y C, Tang M. Robust tracking via weakly supervised ranking SVM. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2012. 1854-1861
[192] Hare S, Saffari A, Torr P H S. Struck:structured output tracking with kernels. In:Proceedings of the 2011 International Conference on Computer Vision (ICCV). Barcelona, Spain:IEEE, 2011. 263-270
[193] Tang F, Brennan S, Zhao Q, Tao H. Co-tracking using semisupervised support vector machines. In:Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil:IEEE, 2007. 1-8 https://www.computer.org/web/csdl/index/-/csdl/proceedings/iccv/2007/1630/00/index.html
[194] Zhang S L, Sui Y, Yu X, Zhao S C, Zhang L. Hybrid support vector machines for robust object tracking. Pattern Recognition, 2015, 48(8):2474-2488 doi: 10.1016/j.patcog.2015.02.008
[195] Zhang X M, Wang M G. Compressive tracking using incremental LS-SVM. In:Proceedings of the 27th Chinese Control and Decision Conference (CCDC). Qingdao, China:IEEE, 2015. 1845-1850
[196] Breiman L. Random forests. Machine Learning, 2001, 45(1):5-32 doi: 10.1023/A:1010933404324
[197] Saffari A, Leistner C, Santner J, Godec M, Bischof H. Online random forests. In:Proceedings of the 12th IEEE International Conference on Computer Vision (ICCVW). Kyoto, Japan:IEEE, 2009. 1393-1400 http://www.oalib.com/references/19330612
[198] Leistner C, Saffari A, Bischof H. Miforests:multipleinstance learning with randomized trees. In:Proceedings of the 11th European Conference on Computer Vision (ECCV 2010). Crete, Greece:Springer, 2010. 29-42
[199] Godec M, Leistner C, Saffari A, Bischof H. On-line random naive bayes for tracking. In:Proceedings of the 20th International Conference on Pattern Recognition (ICPR). Istanbul, Turkey:IEEE, 2010. 3545-3548
[200] Wang A P, Wan G W, Cheng Z Q, Li S K. An incremental extremely random forest classifier for online learning and tracking. In:Proceedings of the 16th IEEE International Conference on Image Processing (ICIP). Cairo, Egypt:IEEE, 2009. 1449-1452
[201] Lin R S, Ross D A, Lim J, Yang M H. Adaptive discriminative generative model and its applications. In:Proceedings of the 2004 Advances in Neural Information Processing Systems 17. Vancouver, British Columbia, Canada:MIT Press, 2004. 801-808
[202] Nguyen H T, Smeulders A W M. Robust tracking using foreground-background texture discrimination. International Journal of Computer Vision, 2006, 69(3):277-293 doi: 10.1007/s11263-006-7067-x
[203] Li X, Hu W M, Zhang Z F, Zhang X Q, Zhu M L, Cheng J. Visual tracking via incremental log-Euclidean Riemannian subspace learning. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA:IEEE, 2008. 1-8
[204] Wang X Y, Hua G, Han T X. Discriminative tracking by metric learning. In:Proceedings of the 11th European Conference on Computer Vision (ECCV 2010). Heraklion, Crete, Greece:Springer, 2010. 200-214 http://dblp.uni-trier.de/db/conf/eccv/eccv2010-3
[205] Tsagkatakis G, Savakis A. Online distance metric learning for object tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(12):1810-1821 doi: 10.1109/TCSVT.2011.2133970
[206] Xu Z F, Shi P F, Xu X Y. Adaptive subclass discriminant analysis color space learning for visual tracking. In:Proceedings of the 9th Pacific Rim Conference on Advances in Multimedia Information Processing (PCM 2008). Tainan, China:Springer, 2008. 902-905
[207] Zhang X Q, Hu W M, Chen S Y, Maybank S. Graphembedding-based learning for robust object tracking. IEEE Transactions on Industrial Electronics, 2014, 61(2):1072-1084 doi: 10.1109/TIE.2013.2258306
[208] 查宇飞, 毕笃彦, 杨源, 董守平, 罗宁.基于全局和局部约束直推学习的鲁棒跟踪研究.自动化学报, 2010, 36(8):1084-1090 doi: 10.3724/SP.J.1004.2010.01084

Zha Yu-Fei, Bi Du-Yan, Yang Yuan, Dong Shou-Ping, Luo Ning. Transductive learning with global and local constraints for robust visual tracking. Acta Automatica Sinica, 2010, 36(8):1084-1090 doi: 10.3724/SP.J.1004.2010.01084
[209] Wu Y, Lim J, Yang M H. Online object tracking:a benchmark. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA:IEEE, 2013. 2411-2418
[210] Wu Y, Lim J, Yang M H. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1834-1848 doi: 10.1109/TPAMI.2014.2388226
[211] Collins R, Zhou X H, Teh S K. An open source tracking testbed and evaluation web site. In:Proceedings of IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Beijing, China:IEEE, 2005. http://www.oalib.com/references/9307084
[212] Fisher R B. The PETS04 surveillance ground-truth data sets. In:Proceedings of the 6th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Prague, Czech Republic:IEEE, 2004. 1-5
[213] Pellegrini S, Ess A, Schindler K, van Gool L. You 0ll never walk alone:modeling social behavior for multi-target tracking. In:Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009. 261-268
[214] Leibe B, Schindler K, Van Gool L. Coupled detection and trajectory estimation for multi-object tracking. In:Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil:IEEE, 2007. 1-8 https://lirias.kuleuven.be/handle/123456789/276721
[215] Milan A, Leal-Taixe L, Reid I, Roth S, Schindler K. MOT16:a benchmark for multi-object tracking. arXiv:1603.00831, 2016. http://arxiv.org/pdf/1603.00831v2.pdf
[216] Li L Z, Nawaz T, Ferryman J. PETS 2015:datasets and challenge. In:Proceedings of the 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Karlsruhe, Germany:IEEE, 2015. 1-6 https://www.computer.org/csdl/proceedings/avss/2015/7632/00/index.html
[217] Kristan M, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernandez G, Vojir T, Hager G, Nebehay G, Pflugfelder R, Gupta A, Bibi A, Lukezic A, Garcia-Martin A, Saffari A, Petrosino A, Montero A S. The visual object tracking VOT 2015 challenge results. In:Proceedings of the 2015 IEEE International Conference on Computer Vision Workshops. Santiago, Chile:IEEE, 2015. 564-586
[218] Lee J Y, Yu W. Visual tracking by partition-based histogram backprojection and maximum support criteria. In:Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO). Karon Beach, Thailand:IEEE, 2011. 2860-2865
[219] Vojir T, Noskova J, Matas J. Robust scale-adaptive meanshift for tracking. Pattern Recognition Letters, 2014, 49:250-258 doi: 10.1016/j.patrec.2014.03.025
[220] Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In:Proceedings of the 12th European Conference on Computer Vision (ECCV 2012). Florence, Italy:Springer, 2012. 864-877
[221] Bao C L, Wu Y, Ling H B, Ji H. Real time robustll tracker using accelerated proximal gradient approach. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2012. 1830-1837
[222] Binh N D. Online boosting-based object tracking. In:Proceedings of the 12th International Conference on Advances in Mobile Computing and Multimedia. Kaohsiung, China:ACM, 2014. 194-202
[223] Dinh T B, Vo N, Medioni G. Context tracker:exploring supporters and distracters in unconstrained environments. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI:IEEE, 2011. 1177-1184 http://www.oalib.com/references/19330642
[224] Dollár P, Belongie S, Perona P. The fastest pedestrian detector in the west. In:Proceedings of the 2010 British Machine Vision Conference. Aberystwyth, UK:British Machine Vision Association, 2010. 68.1-68.11 http://www.researchgate.net/publication/221259170_The_Fastest_Pedestrian_Detector_in_the_West
[225] Hare S, Golodetz S, Saffari A, Vineet V, Cheng M M, Hicks S, Torr P. Struck:structured output tracking with kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, DOI: 10.1109/TPAMI.2015.2509974
[226] Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1619-1632 doi: 10.1109/TPAMI.2010.226
[227] Kristan M, Pflugfelder R, Leonardis A, Matas J, ČehovinL, Nebehay G, Vojıř T, Fernández G, LukežičA, Dimitriev A, Petrosino A, Saffari A, Li B, Han B, Heng C, Garcia C, PangeršičD, Häger G, Khan F S, Oven F, Possegger H, Bischof H, Nam H, Zhu J K, Li J J, Choi J Y, Choi J W, Henriques J F, van de Weijer J, Batista J, Lebeda K, Öfjäll K, Yi K M, Qin L, Wen L Y, Maresca M E, Danelljan M, Felsberg M, Cheng M M, Torr P, Huang Q M, Bowden R, Hare S, Lim S Y, Hong S, Liao S C, Hadfield S, Li S Z, Duffner S, Golodetz S, Mauthner T, Vineet V, Lin W Y, Li Y, Qi Y K, Lei Z, Niu Z H. The visual object tracking VOT2014 challenge results. In:Proceedings of the European Conference on Computer Vision (ECCV 2014), Lecture Notes in Computer Science. Zurich, Switzerland:Springer International Publishing, 2015. 191-217