[1] Logothetis N K. What we can do and what we cannot do with fMRI. Nature, 2007, 453(9197): 869-878
[2] Zou L, Zhang Y, Qian N, Zhou R L. Emotion cognitive reappraisal research based on simultaneous recording of EEG and BOLD responses. In: Proceedings of the 10th International Symposium on Neural Networks. Dalian, China: Springer, 2013. 52-59
[3] Maloney T C, Tenney J R, Szaflarski J P, Vannest J. Simultaneous electroencephalography and functional magnetic resonance imaging and the identification of epileptic networks in children. Journal of Pediatric Epilepsy, 2015, 4(4): 174-183
[4] 王行愚, 金晶, 张宇, 王蓓. 脑控: 基于脑-机接口的人机融合控制. 自动化学报, 2013, 39(3): 208-221

Wang Xing-Yu, Jin Jing, Zhang Yu, Wang Bei. Brain control: human-computer integration control based on brain-computer interface. Acta Automatica Sinica, 2013, 39(3): 208-221
[5] Vulliemoz S, Rodionov R, Carmichael D W, Thornton R, Guye M, Lhatoo S D, Michel C M, Duncan J S, Lemieux L. Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy. NeuroImage, 2010, 49(4): 3219-3229
[6] Henson R N, Flandin G, Friston J K, Mattout J. A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Human Brain Mapping, 2010, 31(10): 1512-1531
[7] Bridwell A D, Wu L, Eichele T, Calhoun V D. The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps. NeuroImage, 2013, 69: 101-111
[8] Lei X, Qiu C, Xu P, Yao D Z. A parallel framework for simultaneous EEG/fMRI analysis: methodology and simulation. NeuroImage, 2010, 52(3): 1123-1134
[9] Correa N M, Eichele T, Adali T, Li Y-O, Calhoun V D. Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI. NeuroImage, 2010, 50(4): 1438-1445
[10] Wessing I, Rehbein M A, Romer G, Achtergarde S, Dobel C, Zwitserlood P, Fürniss T, Junghöfer M. Cognitive emotion regulation in children: reappraisal of emotional faces modulates neural source activity in a frontoparietal network. Developmental Cognitive Neuroscience, 2015, 13: 1-10
[11] Yuan L, Zhou R L, Hu S Q. Cognitive reappraisal of facial expressions: electrophysiological evidence of social anxiety. Neuroscience Letters, 2014, 577: 45-50
[12] Schindler S, Wegrzyn M, Steppacher I, Kissler J. Perceived communicative context and emotional content amplify visual word processing in the fusiform gyrus. The Journal of Neuroscience, 2015, 35(15): 6010-6019
[13] Mardaga S, Lakimova G. Neurocognitive processing of emotion facial expressions in individuals with self-reported depressive symptoms: the role of personality and anxiety. Neurophysiologie Clinique, 2014, 44(5): 447-455
[14] Sarkheil P, Zilverstand A, Kilian-Hütten N, Schneider F, Goebel R, Mathiak K. fMRI feedback enhances emotion regulation as evidenced by a reduced amygdala response. Behavioural Brain Research, 2015, 281: 326-332
[15] Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 2004, 134(1): 9-21
[16] Navarro X, Porée F, Beuchée A, Carrault G. Denoising preterm EEG by signal decomposition and adaptive filtering: a comparative study. Medical Engineering and Physics, 2015, 37(3): 315-320
[17] Scheeringa R, Petersson K M, Oostenveld R, Norris D G, Hagoort P, Bastiaansen M C M. Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. NeuroImage, 2009, 44(3): 1224-1238
[18] Paul S, Simon D, Kniesche R, Kathmann N, Endrass T. Timing effects of antecedent- and response-focused emotion regulation strategies. Biological Psychology, 2013, 94(1): 136-142
[19] Liu Y L, Huang H Q, McGinnis-Deweese M, Keil A, Ding M Z. Neural substrate of the late positive potential in emotional processing. The Journal of Neuroscience, 2012, 32(42): 14563-14572