[1] Olsen P A, Gopinath R A. Modeling inverse covariance matrices by basis expansion. IEEE Transactions on Speech and Audio Processing, 2004, 12(1): 37-46
[2] [2] Ko T, Mak B. Eigentriphones for context-dependent acoustic modeling. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(6): 1285-1294
[3] [3] Ko T, Mak B. Eigentrigraphemes for under-resourced languages. Speech Communication, 2014, 56: 132-141
[4] [4] Povey D, Burget L, Agarwal M, Akyazi P, Kai F, Ghoshal A, Glembek O, Goel N, Karafit M, Rastrow A, Rose R C, Schwarz P, Thomas S. The subspace Gaussian mixture model a structured model for speech recognition. Computer Speech Language, 2011, 25(2): 404-439
[5] [5] Qi J, Wang D, Tejedor J. Subspace models for bottleneck features. In: Proceedings of the 14th Annual Conference of the International Speech Communication Association. Lyon, France: ISCA, 2013. 1746-1750
[6] [6] Motlcek P, Imseng D, Garner P N. Crosslingual tandem-SGMM: exploiting out-of-language data for acoustic model and feature level adaptation. In: Proceedings of the 14th Annual Conference of the International Speech Communication Association. Lyon, France: ISCA, 2013. 510-514
[7] [7] Lu L, Ghoshal A, Renals S. Cross-lingual subspace Gaussian mixture models for low-resource speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(1): 17-27
[8] [8] Saon G, Chien J T. Bayesian sensing hidden Markov models. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 43-54
[9] [9] Zhang W B, Fung P. Sparse inverse covariance matrices for low resource speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(3): 659-668
[10] Zhang W B, Fung P. Discriminatively trained sparse inverse covariance matrices for speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(5): 873-882
[11] Jansen A, Niyogi P. Intrinsic Fourier analysis on the manifold of speech sounds. In: Proceedings of the 2006 International Conference on Acoustics, Speech, and Signal Processing. Toulouse: IEEE, 2006. 1: 241-244
[12] Lu X G, Dang J W. Vowel production manifold: intrinsic factor analysis of vowel articulation. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(5): 1053-1062
[13] Ghahramani Z, Hinton G. The EM Algorithm for Mixtures of Factor Analyzers, Technical Report CRG-TR-96-1, Department of Computer Science, University of Toronto, Toronto, Canada, 1996.
[14] Carin L, Baraniuk R G, Cevher V, Dunson D, Jordan M I, Sapiro G, Wakin M B. Learning low-dimensional signal models. IEEE Signal Processing Magazine, 2011, 28(2): 39-51
[15] Chen M H, Silva J, Paisley J, Wang C P, Dunson D, Carin L. Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds. IEEE Transactions on Signal Processing, 2010, 58(12): 6140-6155
[16] Bishop C M. Pattern Recognition and Machine Learning. New York: Springer Science+Business Media, 2006. 90-93
[17] Povey D, Ghoshal A, Boulianne G, Burget L, Glembek O, Goel N, Hannemann M, Motlicek P, Qian Y M, Schwarz P, Silovsky J, Stemmer G, Vesely K. The Kaldi speech recognition toolkit. In: Proceedings of the 2011 IEEE Workshop on Automatic Speech Recognition and Understanding. Hawaii, US: IEEE, 2011.
[18] Zibulevsky M, Elad M. L1-L2 optimization in signal and image processing. IEEE Signal Processing Magazine, 2010, 27(3): 76-88
[19] Riedhammer K, Bocklet T, Ghoshal A, Povey D. Revisiting semi-continuous hidden Markov models. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Kyoto: IEEE, 2012. 4721-4724